Driver Digital Twin for Online Recognition of Distracted Driving Behaviors

分散注意力 计算机科学 人工智能 任务(项目管理) 分心驾驶 背景(考古学) 领域(数学) 机器学习 人机交互 工程类 认知心理学 心理学 纯数学 系统工程 古生物学 生物 数学
作者
Yunsheng Ma,Runjia Du,Amr Abdelraouf,Kyungtae Han,Rohit Gupta,Ziran Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3168-3180 被引量:5
标识
DOI:10.1109/tiv.2024.3353253
摘要

Deep learning has been widely utilized in intelligent vehicle systems, particularly in the field of driver distraction detection. However, existing methods in this application tend to focus solely on appearance or cognitive state as indicators of distraction, while neglecting the significance of temporal modeling in accurately identifying driver actions. This oversight can result in limitations such as difficulty in comprehending context, incapability to recognize gradual changes, and failure to capture complex behaviors. To address these limitations, this paper introduces a new framework based on the concept of Driver Digital Twin (DDT). The DDT framework serves as a digital replica of the driver, capturing their naturalistic driving data and behavioral models. It consists of a transformer-based driver action recognition module and a novel temporal localization module to detect distracted behaviors. Additionally, we propose a pseudo-labeled multi-task learning algorithm that includes driver emotion recognition as supplementary information for recognizing distractions. We have validated the effectiveness of our approach using three publicly available driver distraction detection benchmarks: SFDDD, AUCDD, and SynDD2. The results demonstrate that our framework achieves state-of-theart performance in both driver action recognition and temporal localization tasks. It outperforms the leading methods by 6.5 and 0.9 percentage points on SFDDD and AUCDD, respectively. Furthermore, it ranks in the top 5% on the SynDD2 leaderboard
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助冰海采纳,获得10
1秒前
李新悦发布了新的文献求助10
1秒前
2秒前
jia完成签到 ,获得积分10
2秒前
ycw123发布了新的文献求助10
3秒前
英姑应助姜平凡采纳,获得20
3秒前
believe完成签到,获得积分10
3秒前
果汁狸发布了新的文献求助10
3秒前
医学生Mavis完成签到,获得积分10
4秒前
bainwei完成签到,获得积分10
5秒前
6秒前
CCC发布了新的文献求助10
7秒前
阿飞发布了新的文献求助10
7秒前
ATREE发布了新的文献求助10
8秒前
9秒前
忞航发布了新的文献求助20
9秒前
喜悦的向日葵完成签到,获得积分10
9秒前
10秒前
大力的宝川完成签到 ,获得积分10
11秒前
天下无敌完成签到 ,获得积分10
11秒前
12秒前
12秒前
温暖的皮皮虾完成签到,获得积分10
12秒前
阿妮发布了新的文献求助10
13秒前
博修发布了新的文献求助10
13秒前
辛勤的问薇完成签到 ,获得积分20
13秒前
14秒前
14秒前
ATREE完成签到,获得积分10
14秒前
14秒前
iop发布了新的文献求助10
18秒前
19秒前
sunshine发布了新的文献求助10
20秒前
hao发布了新的文献求助10
21秒前
21秒前
仔wang完成签到,获得积分10
23秒前
韩凡发布了新的文献求助10
24秒前
大模型应助always采纳,获得10
24秒前
强风吹拂发布了新的文献求助10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798842
求助须知:如何正确求助?哪些是违规求助? 3344585
关于积分的说明 10320753
捐赠科研通 3061034
什么是DOI,文献DOI怎么找? 1679982
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386