A Novel Approach for Predicting Anthropogenic CO2 Emissions Using Machine Learning Based on Clustering of the CO2 Concentration

聚类分析 环境科学 气候学 气象学 计算机科学 机器学习 地质学 地理
作者
Zhanghui Ji,Hao Song,Liping Lei,Mengya Sheng,Kaiyuan Guo,Shaoqing Zhang
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 323-323 被引量:3
标识
DOI:10.3390/atmos15030323
摘要

The monitoring of anthropogenic CO2 emissions, which increase the atmospheric CO2 concentration, plays the most important role in the management of emission reduction and control. With the massive increase in satellite-based observation data related to carbon emissions, a data-driven machine learning method has great prospects for predicting anthropogenic CO2 emissions. Training samples, which are used to model predictions of anthropogenic CO2 emissions through machine learning algorithms, play a key role in obtaining accurate predictions for the spatial heterogeneity of anthropogenic CO2 emissions. We propose an approach for predicting anthropogenic CO2 emissions using the training datasets derived from the clustering of the atmospheric CO2 concentration and the segmentation of emissions to resolve the issue of the spatial heterogeneity of anthropogenic CO2 emissions in machine learning modeling. We assessed machine learning algorithms based on decision trees and gradient boosting (GBDT), including LightGBM, XGBoost, and CatBoost. We used multiple parameters related to anthropogenic CO2-emitting activities as predictor variables and emission inventory data from 2019 to 2021, and we compared and verified the accuracy and effectiveness of different prediction models based on the different sampling methods of training datasets combined with machine learning algorithms. As a result, the anthropogenic CO2 emissions predicted by CatBoost modeling from the training dataset derived from the clustering analysis and segmentation method demonstrated optimal prediction accuracy and performance for revealing anthropogenic CO2 emissions. Based on a machine learning algorithm using observation data, this approach for predicting anthropogenic CO2 emissions could help us quickly obtain up-to-date information on anthropogenic CO2 emissions as one of the emission monitoring tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助52pry采纳,获得10
2秒前
yc完成签到,获得积分10
5秒前
稗子完成签到,获得积分10
6秒前
9秒前
典雅的夜安完成签到,获得积分10
10秒前
吴刚俊完成签到,获得积分10
10秒前
ESLG完成签到 ,获得积分10
13秒前
爱生气的小龙完成签到 ,获得积分10
13秒前
笨笨芯应助诗蕊采纳,获得10
15秒前
zhw完成签到 ,获得积分10
16秒前
19秒前
科研修沟完成签到 ,获得积分10
19秒前
南宫士晋完成签到 ,获得积分10
21秒前
科研通AI2S应助细心映菱采纳,获得10
23秒前
桐桐应助细心映菱采纳,获得10
23秒前
星曳发布了新的文献求助10
24秒前
24秒前
25秒前
27秒前
LIIII完成签到,获得积分10
27秒前
幽默孤容发布了新的文献求助10
29秒前
31秒前
wangbq发布了新的文献求助20
31秒前
conanyangqun完成签到,获得积分10
32秒前
仲夏完成签到,获得积分10
32秒前
Jessica发布了新的文献求助10
33秒前
hongshao0504完成签到,获得积分10
34秒前
李健的小迷弟应助星曳采纳,获得10
37秒前
1z6完成签到 ,获得积分20
41秒前
kingwill应助陈影采纳,获得20
43秒前
46秒前
47秒前
相机大喊大叫完成签到,获得积分10
48秒前
48秒前
充电宝应助小兔子采纳,获得10
50秒前
jianhan发布了新的文献求助10
50秒前
jify发布了新的文献求助10
51秒前
Jasper应助公卫小白采纳,获得10
51秒前
52秒前
科研通AI5应助xmf采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224191
捐赠科研通 3040859
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649