Research on Classification Algorithm of Silicon Single-Crystal Growth Temperature Gradient Trend Based on Multi-Level Feature Fusion

加权 人工智能 相互信息 算法 计算机科学 特征(语言学) 数据挖掘 熵(时间箭头) 深信不疑网络 机器学习 模式识别(心理学) 材料科学 人工神经网络 物理 语言学 哲学 量子力学 声学 冶金
作者
Yu-Yu Liu,Lingxia Mu,Pengju Zhang,Ding Liu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (4): 1254-1254
标识
DOI:10.3390/s24041254
摘要

In the process of silicon single-crystal preparation, the timely identification and adjustment of abnormal conditions are crucial. Failure to promptly detect and resolve issues may result in a substandard silicon crystal product quality or even crystal pulling failure. Therefore, the early identification of abnormal furnace conditions is essential for ensuring the preparation of perfect silicon single crystals. Additionally, since the thermal field is the fundamental driving force for stable crystal growth and the primary assurance of crystal quality, this paper proposes a silicon single-crystal growth temperature gradient trend classification algorithm based on multi-level feature fusion. The aim is to accurately identify temperature gradient changes during silicon crystal growth, in order to promptly react to early growth failures and ensure the stable growth of high-quality silicon single crystals to meet industrial production requirements. The algorithm first divides the temperature gradient trend into reasonable categories based on expert knowledge and qualitative analysis methods. Then, it fuses the original features of actual production data, shallow features extracted based on statistical information, and deep features extracted through deep learning. During the fusion process, the algorithm considers the impact of different features on the target variable and calculates mutual information based on the difference between information entropy and conditional entropy, ultimately using mutual information for feature weighting. Subsequently, the fused multi-level feature vectors and their corresponding trend labels are input into a Deep Belief Network (DBN) model to capture process dynamics and classify trend changes. Finally, the experimental results demonstrate that the proposed algorithm can effectively predict the changing trend of thermal field temperature gradients. The introduction of this algorithm will help improve the accuracy of fault trend prediction in silicon single-crystal preparation, thereby minimizing product quality issues and production interruptions caused by abnormal conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加减乘除完成签到,获得积分10
2秒前
ahxb发布了新的文献求助10
6秒前
mac-118完成签到,获得积分10
6秒前
烟花应助灵巧的不凡采纳,获得10
7秒前
linlinyilulvdeng完成签到,获得积分10
11秒前
15秒前
Ava应助coli采纳,获得10
16秒前
凸迩丝儿完成签到 ,获得积分10
16秒前
Chen完成签到,获得积分10
17秒前
17秒前
17秒前
共享精神应助guoguo采纳,获得10
20秒前
宁霸发布了新的文献求助10
22秒前
lyabigale完成签到 ,获得积分0
23秒前
hekunng发布了新的文献求助30
23秒前
ahxb完成签到,获得积分10
24秒前
24秒前
Qi完成签到 ,获得积分10
25秒前
26秒前
传奇3应助肥仔采纳,获得10
29秒前
coli发布了新的文献求助10
30秒前
liuhongcan发布了新的文献求助10
31秒前
oneonlycrown完成签到,获得积分10
31秒前
Owen应助sss采纳,获得10
32秒前
完美世界应助daidai采纳,获得10
34秒前
34秒前
35秒前
榜一大哥的负担完成签到 ,获得积分10
36秒前
36秒前
38秒前
guoguo发布了新的文献求助10
40秒前
GreenT完成签到,获得积分10
40秒前
41秒前
xueshucao完成签到,获得积分20
42秒前
可爱向卉发布了新的文献求助10
42秒前
风信子完成签到,获得积分10
43秒前
咕咕鸡完成签到,获得积分10
43秒前
45秒前
8R60d8应助coli采纳,获得10
47秒前
丰富的大地完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333409
求助须知:如何正确求助?哪些是违规求助? 3845102
关于积分的说明 12010796
捐赠科研通 3485690
什么是DOI,文献DOI怎么找? 1913365
邀请新用户注册赠送积分活动 956534
科研通“疑难数据库(出版商)”最低求助积分说明 857259