Solving Bilevel Programs Based on Lower-Level Mond-Weir Duality

双层优化 对偶(序理论) 数学 数学优化 数理经济学 计算机科学 组合数学 地理 最优化问题 地图学
作者
Yu-Wei Li,Gui‐Hua Lin,Xide Zhu
出处
期刊:Informs Journal on Computing 卷期号:36 (5): 1225-1241 被引量:3
标识
DOI:10.1287/ijoc.2023.0108
摘要

This paper focuses on developing effective algorithms for solving a bilevel program. The most popular approach is to replace the lower-level problem with its Karush-Kuhn-Tucker conditions to generate a mathematical program with complementarity constraints (MPCC). However, MPCC does not satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ) at any feasible point. In this paper, inspired by a recent work using the lower-level Wolfe duality (WDP), we apply the lower-level Mond-Weir duality to present a new reformulation, called MDP, for bilevel program. It is shown that, under mild assumptions, they are equivalent in globally or locally optimal sense. An example is given to show that, different from MPCC, MDP may satisfy the MFCQ at its feasible points. Relations among MDP, WDP, and MPCC are investigated. On this basis, we extend the MDP reformulation to present another new reformulation (called eMDP), which has similar properties to MDP. Furthermore, to compare two new reformulations with the MPCC and WDP approaches, we design a procedure to generate 150 tested problems randomly and comprehensive numerical experiments show that MDP has quite evident advantages over MPCC and WDP in terms of feasibility to the original bilevel programs, success efficiency, and average CPU time, whereas eMDP is far superior to all other three reformulations. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This work was supported by the National Natural Science Foundation of China [Grants 12071280 and 11901380]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0108 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0108 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
喵先生完成签到,获得积分10
1秒前
子叶叶子完成签到,获得积分10
1秒前
1秒前
科研助手6应助缓慢墨镜采纳,获得10
1秒前
yikedouya完成签到,获得积分10
2秒前
共享精神应助zzz采纳,获得10
3秒前
程诺发布了新的文献求助20
3秒前
脑洞疼应助Kikisman采纳,获得10
3秒前
3秒前
Caixtmx发布了新的文献求助10
3秒前
wxgCC77发布了新的文献求助10
4秒前
温柔樱桃发布了新的文献求助10
4秒前
喵先生发布了新的文献求助10
4秒前
天天快乐应助hehe采纳,获得10
5秒前
5秒前
Jason关注了科研通微信公众号
5秒前
Fashioner8351发布了新的文献求助10
6秒前
gu123完成签到,获得积分10
6秒前
Junli发布了新的文献求助10
6秒前
上官若男应助伶俐惜萱采纳,获得20
6秒前
6秒前
申申发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
黄bb应助舒适路人采纳,获得30
8秒前
9秒前
9秒前
9秒前
贺小刚发布了新的文献求助10
9秒前
wishait发布了新的文献求助10
10秒前
无花果应助7777采纳,获得10
10秒前
moran发布了新的文献求助10
11秒前
11秒前
11完成签到,获得积分10
11秒前
灰原哀发布了新的文献求助10
12秒前
12秒前
清风完成签到 ,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204