亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling

双三次插值 计算机科学 人工智能 概率逻辑 降噪 插值(计算机图形学) 噪音(视频) 模式识别(心理学) 计算机视觉 分辨率(逻辑) 图像(数学) 线性插值
作者
Chih‐Wei Chang,Junbo Peng,Mojtaba Safari,Elahheh Salari,Shaoyan Pan,Justin Roper,Richard L. J. Qiu,Yuan Gao,Hui‐Kuo G. Shu,Hui Mao,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (4): 045001-045001 被引量:20
标识
DOI:10.1088/1361-6560/ad209c
摘要

Abstract Objective . High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM). Approach . DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020). Main results . For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively. Significance . This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
库里强发布了新的文献求助10
14秒前
46秒前
共享精神应助仁爱的帽子采纳,获得10
1分钟前
1分钟前
WebCasa应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
yayika完成签到,获得积分10
1分钟前
两袖清风完成签到 ,获得积分10
1分钟前
WebCasa发布了新的文献求助10
2分钟前
李健的小迷弟应助huang采纳,获得10
2分钟前
3分钟前
huang完成签到,获得积分10
3分钟前
WebCasa应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
huang发布了新的文献求助10
3分钟前
3分钟前
4分钟前
5分钟前
5分钟前
WebCasa应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
Forever完成签到,获得积分10
5分钟前
Ethan完成签到,获得积分10
5分钟前
石头完成签到 ,获得积分10
5分钟前
小郭发布了新的文献求助20
5分钟前
liuliqiong完成签到,获得积分10
6分钟前
7分钟前
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
搜集达人应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
丁三问发布了新的文献求助10
9分钟前
Arthur完成签到 ,获得积分10
9分钟前
丁三问完成签到,获得积分10
10分钟前
小蘑菇应助库里强采纳,获得10
10分钟前
10分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070