High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling

双三次插值 计算机科学 人工智能 概率逻辑 降噪 插值(计算机图形学) 噪音(视频) 模式识别(心理学) 计算机视觉 分辨率(逻辑) 图像(数学) 线性插值
作者
Chih‐Wei Chang,Junbo Peng,Mojtaba Safari,Elahheh Salari,Shaoyan Pan,Justin Roper,Richard L. J. Qiu,Yuan Gao,Hui‐Kuo G. Shu,Hui Mao,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (4): 045001-045001 被引量:19
标识
DOI:10.1088/1361-6560/ad209c
摘要

Abstract Objective . High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM). Approach . DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020). Main results . For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively. Significance . This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柯一一应助沉静的安南采纳,获得10
1秒前
含糊完成签到 ,获得积分10
1秒前
douzi完成签到,获得积分10
1秒前
tallon发布了新的文献求助10
5秒前
chengzi完成签到,获得积分10
5秒前
jiayou完成签到,获得积分10
6秒前
细心的代天完成签到 ,获得积分10
6秒前
mix完成签到 ,获得积分10
6秒前
葡紫明完成签到 ,获得积分10
7秒前
文瑶琪完成签到,获得积分10
7秒前
8秒前
9秒前
Slide完成签到 ,获得积分20
9秒前
10秒前
破灭圆舞曲完成签到 ,获得积分10
12秒前
yangzhang完成签到,获得积分10
13秒前
buuyoo完成签到,获得积分10
13秒前
zhang发布了新的文献求助10
14秒前
obaica发布了新的文献求助10
14秒前
unaive完成签到,获得积分10
14秒前
15秒前
15秒前
哈哈哈发布了新的文献求助10
15秒前
小冯完成签到 ,获得积分10
16秒前
和谐的万宝路完成签到,获得积分10
16秒前
16秒前
khan完成签到,获得积分10
18秒前
linhuafeng完成签到,获得积分10
18秒前
Raymond完成签到,获得积分10
19秒前
情怀应助彪壮的机器猫采纳,获得10
19秒前
陳某发布了新的文献求助10
20秒前
21秒前
阿牛完成签到,获得积分10
22秒前
Slide发布了新的文献求助10
22秒前
陶醉书包完成签到 ,获得积分10
23秒前
优雅的雁凡完成签到,获得积分10
24秒前
哈哈哈完成签到,获得积分10
24秒前
buuyoo发布了新的文献求助10
24秒前
yoyocici1505完成签到,获得积分10
28秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902129
求助须知:如何正确求助?哪些是违规求助? 3446881
关于积分的说明 10846113
捐赠科研通 3172029
什么是DOI,文献DOI怎么找? 1752535
邀请新用户注册赠送积分活动 847337
科研通“疑难数据库(出版商)”最低求助积分说明 789876