Phase prediction and experimental realisation of a new high entropy alloy using machine learning

随机森林 支持向量机 计算机科学 决策树 机器学习 高熵合金 人工智能 虚假关系 数据挖掘 合金 材料科学 复合材料
作者
Swati Singh,Nirmal Kumar Katiyar,Saurav Goel,Shrikrishna N. Joshi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:40
标识
DOI:10.1038/s41598-023-31461-7
摘要

Abstract Nearly ~ 10 8 types of High entropy alloys (HEAs) can be developed from about 64 elements in the periodic table. A major challenge for materials scientists and metallurgists at this stage is to predict their crystal structure and, therefore, their mechanical properties to reduce experimental efforts, which are energy and time intensive. Through this paper, we show that it is possible to use machine learning (ML) in this arena for phase prediction to develop novel HEAs. We tested five robust algorithms namely, K-nearest neighbours (KNN), support vector machine (SVM), decision tree classifier (DTC), random forest classifier (RFC) and XGBoost (XGB) in their vanilla form (base models) on a large dataset screened specifically from experimental data concerning HEA fabrication using melting and casting manufacturing methods. This was necessary to avoid the discrepancy inherent with comparing HEAs obtained from different synthesis routes as it causes spurious effects while treating an imbalanced data—an erroneous practice we observed in the reported literature. We found that (i) RFC model predictions were more reliable in contrast to other models and (ii) the synthetic data augmentation is not a neat practice in materials science specially to develop HEAs, where it cannot assure phase information reliably. To substantiate our claim, we compared the vanilla RFC (V-RFC) model for original data (1200 datasets) with SMOTE-Tomek links augmented RFC (ST-RFC) model for the new datasets (1200 original + 192 generated = 1392 datasets). We found that although the ST-RFC model showed a higher average test accuracy of 92%, no significant breakthroughs were observed, when testing the number of correct and incorrect predictions using confusion matrix and ROC-AUC scores for individual phases. Based on our RFC model, we report the development of a new HEA (Ni 25 Cu 18.75 Fe 25 Co 25 Al 6.25 ) exhibiting an FCC phase proving the robustness of our predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的迎梦完成签到 ,获得积分10
2秒前
《子非鱼》完成签到,获得积分10
5秒前
41完成签到,获得积分10
8秒前
西洲完成签到 ,获得积分10
11秒前
郭优优完成签到 ,获得积分10
12秒前
guangshuang完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
pwang_lixin完成签到,获得积分10
17秒前
奋斗小真完成签到 ,获得积分10
20秒前
yxrose完成签到,获得积分10
21秒前
pwang_ecust完成签到,获得积分10
28秒前
林夕完成签到,获得积分10
29秒前
34秒前
发嗲的慕蕊完成签到 ,获得积分10
35秒前
冫封的泪完成签到,获得积分10
36秒前
眼科女医生小魏完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
lmq完成签到 ,获得积分10
40秒前
星星月完成签到 ,获得积分10
41秒前
匆匆赶路人完成签到 ,获得积分10
43秒前
俭朴的芝麻完成签到,获得积分10
45秒前
愉快的犀牛完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
58秒前
雅典的宠儿完成签到 ,获得积分10
59秒前
狼来了aas完成签到,获得积分10
1分钟前
红薯干完成签到,获得积分10
1分钟前
在水一方应助欣喜的嘉熙采纳,获得10
1分钟前
汐总完成签到,获得积分10
1分钟前
夏紫儿完成签到 ,获得积分10
1分钟前
ooa4321完成签到,获得积分10
1分钟前
醋溜爆肚儿完成签到,获得积分10
1分钟前
CNAxiaozhu7完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Bingtao_Lian完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
贝贝应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883870
求助须知:如何正确求助?哪些是违规求助? 3426175
关于积分的说明 10747174
捐赠科研通 3150996
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734