亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing vancomycin dosing in pediatrics: a machine learning approach to predict trough concentrations in children under four years of age

加药 医学 万古霉素 儿科 药店 低谷(经济学) 槽浓度 重症监护医学 家庭医学 内科学 金黄色葡萄球菌 遗传学 生物 宏观经济学 经济 细菌
作者
Minghui Yin,Yuelian Jiang,Yawen Yuan,Chensuizi Li,Qian Gao,Hui Lü,Zhiling Li
出处
期刊:International Journal of Clinical Pharmacy [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s11096-024-01745-7
摘要

Vancomycin trough concentration is closely associated with clinical efficacy and toxicity. Predicting vancomycin trough concentrations in pediatric patients is challenging due to significant inter-individual variability and rapid physiological changes during maturation. This study aimed to develop a machine learning model to predict vancomycin trough concentrations and determine optimal dosing regimens for pediatric patients < 4 years of age using ML algorithms. A single-center retrospective observational study was conducted from January 2017 to March 2020. Pediatric patients who received intravenous vancomycin and underwent therapeutic drug monitoring were enrolled. Seven ML models [linear regression, gradient boosted decision trees, support vector machine, decision tree, random forest, Bagging, and extreme gradient boosting (XGBoost)] were developed using 31 variables. Performance metrics including R-squared (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) were compared, and important features were ranked. The study included 120 eligible trough concentration measurements from 112 patients. Of these, 84 measurements were used for training and 36 for testing. Among the seven algorithms tested, XGBoost showed the best performance, with a low prediction error and high goodness of fit (MAE = 2.55, RMSE = 4.13, MSE = 17.12, and R2 = 0.59). Blood urea nitrogen, serum creatinine, and creatinine clearance rate were identified as the most important predictors of vancomycin trough concentration. An XGBoost ML model was developed to predict vancomycin trough concentrations and aid in drug treatment predictions as a decision-support technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
left_right发布了新的文献求助10
11秒前
xiao完成签到 ,获得积分10
13秒前
充电宝应助帅气书白采纳,获得10
13秒前
无心的哑铃完成签到 ,获得积分10
16秒前
刘刘完成签到 ,获得积分10
20秒前
minhdh完成签到,获得积分10
43秒前
12138发布了新的文献求助10
46秒前
鸣蜩阿六发布了新的文献求助10
47秒前
56秒前
56秒前
xiao闫取经路完成签到,获得积分20
59秒前
含蓄丸子发布了新的文献求助10
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
忧虑的羊完成签到 ,获得积分10
1分钟前
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
真的好想睡觉完成签到,获得积分10
1分钟前
含蓄丸子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
弎夜完成签到,获得积分10
1分钟前
龙泉完成签到 ,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
lijunliang完成签到,获得积分10
2分钟前
松子儿hhh完成签到,获得积分10
2分钟前
相与千日完成签到,获得积分10
2分钟前
2分钟前
yuelsy0117完成签到,获得积分10
2分钟前
yhgz完成签到,获得积分10
2分钟前
倷倷完成签到 ,获得积分10
3分钟前
潇洒飞丹完成签到,获得积分10
3分钟前
3分钟前
Owen应助mxh采纳,获得10
3分钟前
谨慎秋珊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124191
求助须知:如何正确求助?哪些是违规求助? 3662050
关于积分的说明 11590263
捐赠科研通 3362559
什么是DOI,文献DOI怎么找? 1847620
邀请新用户注册赠送积分活动 912034
科研通“疑难数据库(出版商)”最低求助积分说明 827838