Digital-to-Physical Visual Consistency Optimization for Adversarial Patch Generation in Remote Sensing Scenes

对抗制 计算机科学 人工智能 计算机视觉 一致性(知识库)
作者
Jianqi Chen,Yilan Zhang,Chenyang Liu,Keyan Chen,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3397678
摘要

In contrast to digital image adversarial attacks, adversarial patch attacks involve physical operations that project crafted perturbations into real-world scenarios. During the digital-to-physical transition, adversarial patches inevitably undergo information distortion. Existing approaches focus on data augmentation and printer color gamut regularization to improve the generalization of adversarial patches to the physical world. However, these efforts overlook a critical issue within the adversarial patch crafting pipeline—namely, the significant disparity between the appearance of adversarial patches during the digital optimization phase and their manifestation in the physical world. This unexplored concern, termed "Digital-to-Physical Visual Inconsistency", introduces inconsistent objectives between the digital and physical realms, potentially skewing optimization directions for adversarial patches. To tackle this challenge, we propose a novel harmonization-based adversarial patch attack. Our approach involves the design of a self-supervised harmonization method, seamlessly integrated into the adversarial patch generation pipeline. This integration aligns the appearance of adversarial patches overlaid on digital images with the imaging environment of the background, ensuring a consistent optimization direction with the primary physical attack goal. We validate our method through extensive testing on the aerial object detection task. To enhance the controllability of environmental factors for method evaluation, we construct a dataset of 3D simulated scenarios using a graphics rendering engine. Extensive experiments on these scenarios demonstrate the efficacy of our approach. Our code and dataset are publicly accessible at https://github.com/WindVChen/VCO-AP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
运动医学阿澜完成签到,获得积分10
刚刚
Ava应助lzp采纳,获得10
刚刚
1秒前
去过天堂镇的倔强信徒完成签到,获得积分10
2秒前
加绒完成签到,获得积分10
3秒前
乐乐应助机灵雅寒采纳,获得10
5秒前
科研通AI5应助Dicy采纳,获得10
5秒前
7秒前
MH应助小小采纳,获得10
7秒前
10秒前
王王发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分10
13秒前
酷波er应助阿九采纳,获得10
14秒前
可爱的函函应助晨时明月采纳,获得10
14秒前
大模型应助飘逸楷瑞采纳,获得20
17秒前
blueskyzhi发布了新的文献求助10
18秒前
18秒前
赘婿应助将军采纳,获得10
19秒前
赘婿应助哈哈哈采纳,获得10
21秒前
不要加糖完成签到,获得积分10
23秒前
23秒前
Dicy发布了新的文献求助10
23秒前
丘比特应助和谐的以寒采纳,获得10
23秒前
彭于晏应助坦率大米采纳,获得10
27秒前
27秒前
华仔应助结实的思远采纳,获得10
28秒前
科研通AI5应助胡茶茶采纳,获得10
28秒前
飘逸楷瑞发布了新的文献求助20
29秒前
乐乐应助Dicy采纳,获得10
30秒前
感性的早晨完成签到 ,获得积分10
31秒前
大郎发布了新的文献求助20
31秒前
31秒前
情怀应助刘述采纳,获得10
32秒前
正直美女发布了新的文献求助10
33秒前
乐乐应助duke采纳,获得100
34秒前
he完成签到 ,获得积分10
35秒前
38秒前
39秒前
丘比特应助正直美女采纳,获得10
40秒前
Menaly完成签到 ,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792198
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10281070
捐赠科研通 3053210
什么是DOI,文献DOI怎么找? 1675507
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761429