视网膜
视蛋白
视紫红质
视黄醛
生物
精子
细胞生物学
视网膜
化学
生物化学
遗传学
神经科学
作者
Alexander Brandis,Debarun Roy,Ishita Das,Mordechai Sheves,Michael Eisenbach
标识
DOI:10.1038/s41598-024-61488-3
摘要
Abstract In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts—tri- cis retinal, different from the photosensitive 11- cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri -cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri -cis retinal is involved in the thermosensing activity of spermatozoa.
科研通智能强力驱动
Strongly Powered by AbleSci AI