Hydraulic loss mechanisms in Francis turbines induced by guide vane opening based on entropy generation theory

物理 水轮机 熵(时间箭头) 机械 航空航天工程 统计物理学 经典力学 热力学 涡轮机 工程类
作者
Xiaoming Chen,Zhiqiang Huang,T C Li,Zhiqing Zhang,Dongmei Song,Xide Lai
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (8)
标识
DOI:10.1063/5.0276865
摘要

Francis turbines are central to hydropower systems, yet their hydraulic loss mechanisms under variable guide vane openings remain insufficiently characterized. This study employs entropy generation theory and the shear stress transport k–ω turbulence model to investigate a medium specific-speed Francis turbine, analyzing guide vane openings from 26.5% to 66.3% of the maximum opening (α0max) under three heads (145, 160, 175 m). Results reveal that increasing the guide vane opening reduces guide vane entropy generation by 58.3% but induces a nonlinear redistribution of losses: the draft tube's contribution drops from 70.6% to 26.3%, while the runner's rises from 18.2% to 42.3%. This nonlinearity stems from a transition in dominant dissipation mechanisms—viscous effects (e.g., trailing-edge jet–wake interactions) prevail at low openings, while turbulent dissipation (e.g., runner secondary flows) dominates at high openings. In the draft tube, discrete wall-attached vortices at low openings evolve into helical vortex bands at high openings, transforming high-entropy zones from a circumferentially arranged annular pattern (low openings) to a helical vortex-dominated core (high openings). Concurrently, the runner exhibits amplified suction-side flow separation and mid-span secondary flows as the opening expands, elevating turbulent losses. These findings establish a direct link between flow evolution and entropy production, proposing actionable strategies: (1) avoiding prolonged operation in transitional opening ranges (α* = 0.4–0.6) where loss mechanisms compound and (2) optimizing blade geometry to mitigate secondary flows. This work advances Francis turbine design by integrating entropy-driven diagnostics with practical operational guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Serendipity应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Serendipity应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Serendipity应助科研通管家采纳,获得10
3秒前
Serendipity应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Serendipity应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
Meyako应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
崔伟完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
elang完成签到,获得积分10
4秒前
4秒前
科研通AI5应助调皮的蓝天采纳,获得10
4秒前
领导范儿应助好地方采纳,获得10
5秒前
可可coco发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
xfengl发布了新的文献求助10
8秒前
1234完成签到,获得积分10
9秒前
10秒前
希望天下0贩的0应助yhmi0809采纳,获得10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217878
求助须知:如何正确求助?哪些是违规求助? 3751868
关于积分的说明 11797607
捐赠科研通 3416616
什么是DOI,文献DOI怎么找? 1875079
邀请新用户注册赠送积分活动 928907
科研通“疑难数据库(出版商)”最低求助积分说明 837857