Escape dynamics of active Brownian particles with multimodal diffusion

作者
Lin Miao,Jian Liu,Hui-Zi She,Peng-Cheng Li,Jing-Dong Bao,Ming-Gen Li
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:163 (17)
标识
DOI:10.1063/5.0297646
摘要

Escape dynamics of active particles plays a critical role in understanding biochemical reactions. Previous experiments have revealed multimodal protein diffusion in live Escherichia coli, with a distribution of diffusion modes peaked in the subdiffusive regime. However, the influence of such multimodal diffusion on active transport dynamics remains unclear. To address this, we analyze the escape rates of active Brownian particles in a double-well potential by comparing particles with multiple diffusion modes to those with a single mode. For particles exhibiting a single diffusion mode, escape rates increase significantly in subdiffusive regimes as the active noise strength grows, while superdiffusive regimes show slight variations. This occurs because subdiffusive particles are more likely to be trapped in the potential well, which thereby reduces the probability of barrier crossing. Building on these results, we find that multiple diffusion modes can modulate average escape rates of active Brownian particles. For distributions centered on normal or superdiffusive modes, the average escape rate increases with the probability weight of the central mode. In contrast, when the central tendency of the diffusion-mode distribution lies in the subdiffusive regime, the average escape rate exhibits bidirectional behavior, either increasing or decreasing, which depends on the relative weights of diffusion modes. Furthermore, a comparative analysis of Gaussian diffusion-mode distributions against Laplace, Cauchy, and experimentally derived distributions reveals that heavy-tailed characteristics in the superdiffusive regime can enhance average escape rates beyond those predicted by the Gaussian distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
搜集达人应助family采纳,获得10
1秒前
哈基米德应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
热情饼干完成签到,获得积分10
2秒前
阿飞发布了新的文献求助10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
Ava应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
哈基米德应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助something采纳,获得10
4秒前
Mr.Ren发布了新的文献求助10
4秒前
4秒前
Andy发布了新的文献求助10
5秒前
5秒前
Orange应助陈文文采纳,获得10
5秒前
LeoSam完成签到,获得积分10
6秒前
苒苒发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676