Energy-saving optimization of air-conditioning water system based on data-driven and improved parallel artificial immune system algorithm

稳健性(进化) 能源消耗 计算机科学 人工免疫系统 电力系统 最优化问题 数学优化 高效能源利用 人工神经网络 功率(物理) 工程类 算法 人工智能 数学 物理 电气工程 基因 量子力学 生物化学 化学
作者
Siyuan Yang,Junqi Yu,Zhikun Gao,Anjun Zhao
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:283: 116902-116902 被引量:24
标识
DOI:10.1016/j.enconman.2023.116902
摘要

As the air-conditioning water system is designed according to the maximum load, the system will deviate from its optimum state while operating under partial load. Therefore, it is critical that the numerous operating parameters of the various equipments in the system are dynamically adjusted in an effective and timely manner to maximize the operational energy efficiency of the system. To this end, an improved parallel artificial immune system (IPAIS) algorithm is proposed to determine the optimal operating parameters of the system under different loads. Before optimization, the power consumption model is developed using generalized regression neural network (GRNN) combined with mechanism model for each kind of equipment in the system. Afterwards, the optimal control problem is described with the objective of minimizing the total power consumption of all equipments and considering the relevant constraints. Subsequently, the IPAIS is developed to solve the problem by introducing four improvement strategies. Finally, a simulation experiment is conducted using an actual case of an air-conditioning water system. The results show that the developed power consumption model performs well in accuracy, robustness and generalization ability, and the total system energy consumption is reduced by 15.19% after optimization. Meanwhile, the IPAIS is extended to five variants to confirm the functionality and effectiveness of each improved strategy. Furthermore, the optimization performance of IPAIS in the actual system is comprehensively verified and analyzed using an experimental platform. Compared with the comparison algorithms, IPAIS is able to achieve superior optimization results and presents significant advantages in convergence, robustness and computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuang0116发布了新的文献求助10
刚刚
冷酷芫完成签到,获得积分10
1秒前
小化化爱学习完成签到,获得积分10
1秒前
2秒前
乐乐应助幸福纲采纳,获得10
2秒前
4秒前
6秒前
虚拟龙猫完成签到,获得积分10
7秒前
7秒前
达菲完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
搜集达人应助夏天采纳,获得10
10秒前
SigRosa完成签到,获得积分10
11秒前
WZQ完成签到,获得积分10
13秒前
武雨寒发布了新的文献求助10
13秒前
kk发布了新的文献求助10
14秒前
Justine发布了新的文献求助10
14秒前
14秒前
shensiang完成签到,获得积分10
15秒前
imshaw发布了新的文献求助50
15秒前
17秒前
高大的迎梦完成签到,获得积分10
18秒前
顾矜应助Justine采纳,获得10
21秒前
美好的千愁完成签到,获得积分20
21秒前
21秒前
优秀的傲南完成签到,获得积分10
22秒前
匿名网友完成签到 ,获得积分10
23秒前
科研通AI2S应助尼古拉采纳,获得10
25秒前
Hongtao完成签到 ,获得积分10
26秒前
华仔应助我爱Chem采纳,获得10
26秒前
26秒前
科研通AI5应助小张采纳,获得10
26秒前
27秒前
无恙发布了新的文献求助10
27秒前
yana发布了新的文献求助10
27秒前
迅速的蜡烛完成签到 ,获得积分10
27秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800444
求助须知:如何正确求助?哪些是违规求助? 3345694
关于积分的说明 10326773
捐赠科研通 3062182
什么是DOI,文献DOI怎么找? 1680897
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763572