Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China

土壤盐分 环境科学 盐度 遥感 三角洲 土壤科学 水文学(农业) 三角洲 土壤水分 地质学 海洋学 岩土工程 航空航天工程 工程类
作者
Yinshuai Li,Chunyan Chang,Zhuoran Wang,Gengxing Zhao
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:148: 110087-110087 被引量:23
标识
DOI:10.1016/j.ecolind.2023.110087
摘要

As a global problem of soil degradation, salinization has become a major obstacle to the sustainable development of the ecological environment and agriculture in coastal plains. However, the traditional process of salinity survey is too cumbersome, expensive and time-consuming to meet the mapping needs in a large scale. Remote sensing technology has become an important tool for digital soil mapping because of its rich sources, real-time and low cost. In order to meet the objective demand for rapid, accurate, and efficient acquisition and monitoring of soil salinization. This paper collected 61 soil samples from the Kenli District (experimental area) and extracted vegetation and salinity indicators from the Landsat image to construct the salinity inversion model by random forest algorithm. Then, taking the Yellow River Delta as the study area, the conversion coefficient of spectral indicators between Landsat and MODIS images was constructed in the form of the ratio of the mean value. Through optimization, the upscaling conversion method based on land use regionalization was proposed to realize the upscaling inversion and dynamic monitoring of soil salinization. The results showed that: (1) The random forest model based on NDVI, RVI, EVI, SI3, and SI5 can better predict the soil salinity in the experimental area, with R2 = 0.821 and RMSE = 2.811 (validation accuracy). (2) The upscaling conversion method based on land use regionalization can effectively reduce the statistical error and collinearity of spectral indicators constructed by MODIS images and improve their correlation with OLI data and soil salinity. (3) From coastal to inland, soil salinization gradually decreases in the Yellow River Delta. From 2000 to 2020, soil salinization increased first and then decreased, and the salinized soil accounted for 20.35%∼35.10%. This study used multi-source remote sensing data to realize the collaborative inversion at different scales, which was significant for the quantitative estimation of soil salinity, salinization control, and sustainable agricultural development in coastal plains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬aa完成签到 ,获得积分10
5秒前
6秒前
melody发布了新的文献求助10
6秒前
章章发布了新的文献求助10
6秒前
11秒前
Whassupww完成签到,获得积分10
12秒前
崔尔蓉完成签到,获得积分10
15秒前
liuhe发布了新的文献求助10
16秒前
paleo-地质完成签到,获得积分10
20秒前
Ningxin完成签到,获得积分10
20秒前
英俊延恶完成签到,获得积分10
21秒前
kai chen完成签到 ,获得积分0
25秒前
wangjius完成签到,获得积分10
25秒前
西瓜霜完成签到 ,获得积分10
26秒前
利奈唑胺完成签到,获得积分10
26秒前
科研通AI5应助务实的又柔采纳,获得10
26秒前
27秒前
平淡纸飞机完成签到 ,获得积分10
27秒前
xx应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
orixero应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
Lin应助科研通管家采纳,获得10
30秒前
韩野完成签到,获得积分10
30秒前
小蘑菇应助科研通管家采纳,获得50
30秒前
Lucas应助科研通管家采纳,获得10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
李健应助科研通管家采纳,获得10
31秒前
冰魂应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得50
31秒前
Hello应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
纸芯完成签到 ,获得积分10
31秒前
djdh完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275