Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method

地下水 计算机科学 稳健性(进化) 地下水模型 水平衡 概括性 过程(计算) 比例(比率) 人工智能 水文学(农业) 地下水流 地质学 岩土工程 含水层 操作系统 心理学 生物化学 化学 物理 量子力学 心理治疗师 基因
作者
Hejiang Cai,Suning Liu,Haiyun Shi,Zhaoqiang Zhou,Shijie Jiang,Vladan Babovic
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:613: 128495-128495 被引量:61
标识
DOI:10.1016/j.jhydrol.2022.128495
摘要

• A novel hybrid model for simulating groundwater level was developed. • The hybrid model integrated water balance equations with deep learning algorithm. • The proposed model presented the superiority and powerful simulation ability. • The automatic parameterizing ability enhanced the model for cross-region simulation. Model development in groundwater simulation and physics informed deep learning (DL) has been advancing separately with limited integration. This study develops a general hybrid model for groundwater level (GWL) simulations, wherein water balance-based groundwater processes are embedded as physics constrained recurrent neural layers into prevalent DL architectures. Because of the automatic parameterizing process, physics-informed deep learning algorithm (DLA) equips the hybrid model with enhanced abilities of inferring geological structures of catchment and unobserved groundwater-related processes implicitly. The main purposes of this study are: 1) to explore an optimized data-driven method as alternative to complicated groundwater models; 2) to improve the awareness of hydrological knowledge of DL model for lumped GWL simulation; and 3) to explore the lumped data-driven groundwater models for cross-region applications. The 91 illustrative cases of GWL modeling across the middle eastern continental United States (CONUS) demonstrate that the hybrid model outperforms the pure DL models in terms of prediction accuracy, generality, and robustness. More specifically, the hybrid model outperforms the pure DL models in 78 % of catchments with the improved Δ NSE = 0.129. Meanwhile, the hybrid model simulates more stably with different input strategies. This study reveals the superiority and powerful simulation ability of the DL model with physical constraints, which increases trust in data-driven approaches on groundwater modellings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助852采纳,获得10
1秒前
机灵的水池完成签到,获得积分10
3秒前
8秒前
英姑应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
贰鸟应助科研通管家采纳,获得20
9秒前
贰鸟应助科研通管家采纳,获得20
9秒前
zoro应助科研通管家采纳,获得10
9秒前
贰鸟应助科研通管家采纳,获得20
9秒前
zoro应助科研通管家采纳,获得10
9秒前
林谷雨关注了科研通微信公众号
12秒前
14秒前
14秒前
star发布了新的文献求助10
14秒前
16秒前
19秒前
21秒前
聪明的惜芹完成签到,获得积分10
22秒前
学术大佬发布了新的文献求助20
23秒前
小谢同学完成签到 ,获得积分10
24秒前
追寻啤酒发布了新的文献求助10
26秒前
26秒前
26秒前
余额完成签到 ,获得积分10
29秒前
29秒前
科研通AI5应助聪明的惜芹采纳,获得10
31秒前
guoran完成签到,获得积分10
31秒前
llllxj发布了新的文献求助10
32秒前
32秒前
guoran发布了新的文献求助10
36秒前
皎月诗心完成签到 ,获得积分10
37秒前
38秒前
爆米花应助关尔匕禾页采纳,获得10
38秒前
陈瑞娟发布了新的文献求助10
42秒前
情怀应助meng采纳,获得10
43秒前
44秒前
koutianwu完成签到,获得积分10
45秒前
可乐加冰发布了新的文献求助10
46秒前
_呱_完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751