Early identification of bipolar disorder among young adults – a 22‐year community birth cohort

队列 双相情感障碍 医学 人口 队列研究 重性抑郁障碍 人口学 焦虑 儿科 精神科 内科学 心情 环境卫生 社会学
作者
Francisco Diego Rabelo-da-Ponte,Jacson Gabriel Feiten,Benson Mwangi,Fernando C. Barros,Fernando C. Wehrmeister,Ana Maria Baptista Menezes,Flávio Kapczinski,Ives Cavalcante Passos,Maurício Kunz
出处
期刊:Acta Psychiatrica Scandinavica [Wiley]
卷期号:142 (6): 476-485 被引量:18
标识
DOI:10.1111/acps.13233
摘要

We set forth to build a prediction model of individuals who would develop bipolar disorder (BD) using machine learning techniques in a large birth cohort.A total of 3748 subjects were studied at birth, 11, 15, 18, and 22 years of age in a community birth cohort. We used the elastic net algorithm with 10-fold cross-validation to predict which individuals would develop BD at endpoint (22 years) at each follow-up visit before diagnosis (from birth up to 18 years). Afterward, we used the best model to calculate the subgroups of subjects at higher and lower risk of developing BD and analyzed the clinical differences among them.A total of 107 (2.8%) individuals within the cohort presented with BD type I, 26 (0.6%) with BD type II, and 87 (2.3%) with BD not otherwise specified. Frequency of female individuals was 58.82% (n = 150) in the BD sample and 53.02% (n = 1868) among the unaffected population. The model with variables assessed at the 18-year follow-up visit achieved the best performance: AUC 0.82 (CI 0.75-0.88), balanced accuracy 0.75, sensitivity 0.72, and specificity 0.77. The most important variables to detect BD at the 18-year follow-up visit were suicide risk, generalized anxiety disorder, parental physical abuse, and financial problems. Additionally, the high-risk subgroup of BD showed a high frequency of drug use and depressive symptoms.We developed a risk calculator for BD incorporating both demographic and clinical variables from a 22-year birth cohort. Our findings support previous studies in high-risk samples showing the significance of suicide risk and generalized anxiety disorder prior to the onset of BD, and highlight the role of social factors and adverse life events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
PSNH完成签到,获得积分20
5秒前
CipherSage应助柔弱小懒虫采纳,获得10
9秒前
安白发布了新的文献求助10
9秒前
等待盼雁发布了新的文献求助10
9秒前
小冯完成签到,获得积分10
9秒前
ES完成签到 ,获得积分0
10秒前
淀粉肠完成签到 ,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Done应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
summer应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
温柔的妙晴完成签到,获得积分10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
科研助手6应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
852应助Carlos采纳,获得10
15秒前
柔弱小懒虫完成签到,获得积分20
17秒前
19秒前
wlf完成签到,获得积分10
22秒前
22秒前
小潘完成签到,获得积分10
22秒前
24秒前
wlf发布了新的文献求助10
25秒前
Carlos完成签到,获得积分20
26秒前
Carlos发布了新的文献求助10
28秒前
豆豆发布了新的文献求助10
29秒前
31秒前
33秒前
33秒前
L_online发布了新的文献求助20
35秒前
顾矜应助原子采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339