模型预测控制
电池(电)
能源管理
电动汽车
汽车工程
约束(计算机辅助设计)
形势意识
计算机科学
控制理论(社会学)
功率(物理)
控制工程
电源管理
能量(信号处理)
工程类
控制(管理)
航空航天工程
人工智能
物理
统计
机械工程
量子力学
数学
作者
Mohammad Reza Amini,Ilya Kolmanovsky,Jing Sun
标识
DOI:10.1109/tcst.2020.2975464
摘要
Connected and autonomous vehicles (CAVs) have situational awareness that can be exploited for optimal power and thermal management. In this article, we develop a hierarchical model predictive control (H-MPC) strategy for eco-cooling of CAVs, which reduces energy consumption through real-time prediction and multi-timescale and multi-layer optimization. The application of the proposed H-MPC is studied for battery thermal and energy management of an electric vehicle (EV). Our H-MPC approach addresses the uncertainty in the long-term preview of the vehicle speed through robust constraint handling to prevent constraint violation. The simulation results show that compared with a conventional battery thermal management (BTM) strategy, the proposed robust H-MPC saves the battery energy by up to 5.4% under the uncertainties in the long-term vehicle speed predictions in an urban CAV operation scenario.
科研通智能强力驱动
Strongly Powered by AbleSci AI