已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Bayesian approach to toxicological testing

背景(考古学) 考试(生物学) 预测能力 功率(物理) 统计能力 贝叶斯概率 可靠性工程 预测性试验 计算机科学 统计 医学 人工智能 数学 工程类 内科学 基因检测 古生物学 哲学 物理 认识论 生物 量子力学
作者
James C. Felli,Derek J. Leishman
出处
期刊:Journal of Pharmacological and Toxicological Methods [Elsevier BV]
卷期号:105: 106898-106898 被引量:4
标识
DOI:10.1016/j.vascn.2020.106898
摘要

Testing for toxicities is an important activity in drug development. In an ideal world the tests applied would be definitive. In reality this is seldom the case. There are two types of power associated with a test. A test's discriminatory power is characterized by its sensitivity and specificity and tells the investigator the probability of obtaining a test positive in the presence (sensitivity) or a test negative in the absence (specificity) of the toxicity. A test's discriminatory power is an attribute of the test itself. The investigator is, however, more interested in a test's predictive power, which is the probability that the toxicity is present or absent in a novel molecule given the test result. A test's predictive power is a consequence of the test's discriminatory power and the context of its application. Unlike its discriminatory power, the predictive power of a test is not ‘fixed’ and varies with testing context. This means that tests and test context must be taken together to enable an investigator to achieve their desired predictive power. Our intent is to illustrate a broadly applicable approach to testing schemes designed to maximize a test's positive or negative predictive power. Rather than hypothetical tests and toxicities, we use as examples tests available for the prediction of a substance's liability to cause the cardiac arrhythmia torsade de pointes. Owing to intense focus over the last two decades, the discriminatory powers of a number of tests for predicting a torsade de pointes liability are publicly available. Having randomly chosen an initial test (random although plausible as an early screening assessment), the inter-relationship between the prevalence of torsadogenic liability and the discriminatory power of potential follow-on tests were explored in a probability framework, based on Bayes Theorem, to show how testing schemes could be developed based on odds and likelihood ratios. Uncertainty around the prevalence of torsade liability and the discriminatory power of a test were addressed by varying these values and examining their impact on the test's predictive power. Overall, the analysis demonstrates that tests can be strategically combined to reach a desired level of predictive power. This is generally more easily achieved for negative predictive power given a low prevalence of the toxicity under scrutiny. For this work, we used a base prevalence of 10% for a substance to carry a tordsadogenic liability. Given uncertainty around a test's discriminatory power, a probabilistic rather than deterministic approach was recommended. Such an approach necessarily requires the investigator to define distributions around test characteristics as well as their desired probability of attaining a given predictive power. The proposed approach is easily implemented deterministically since values of the discriminatory power of the tests are readily and publicly available. The probabilistic implementation is also easily implemented, but requires that the uncertainty around the test performance and prevalence, and the targets for probability of attaining the desired predictive value all be made explicit rather than remain implicit as is often the case in ‘integrated risk assessment’ or ‘totality of evidence’ presentations. This general approach could form a basis for testing and decision-making that can be communicated and discussed in a consistent manner between scientists as well as between sponsors and regulators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ发布了新的文献求助10
刚刚
fogsea完成签到,获得积分0
4秒前
优美若雁完成签到,获得积分10
6秒前
忧郁小鸽子完成签到,获得积分10
8秒前
9秒前
inz发布了新的文献求助30
13秒前
缓慢海蓝完成签到 ,获得积分10
14秒前
寒冷哈密瓜完成签到 ,获得积分10
15秒前
17秒前
诚心的信封完成签到 ,获得积分10
18秒前
尹静涵完成签到 ,获得积分10
20秒前
能干的妙芹完成签到,获得积分10
22秒前
TYTY发布了新的文献求助10
23秒前
王_123123123123w完成签到 ,获得积分10
25秒前
GQ完成签到,获得积分10
26秒前
满唐完成签到 ,获得积分10
30秒前
雨雨雨雨雨文完成签到 ,获得积分10
32秒前
32秒前
33秒前
喜悦的鬼神完成签到 ,获得积分10
34秒前
34秒前
35秒前
高屋建瓴完成签到,获得积分10
36秒前
王一完成签到 ,获得积分10
36秒前
愔愔思绪给愔愔思绪的求助进行了留言
37秒前
dan1029发布了新的文献求助10
37秒前
子翱完成签到 ,获得积分10
39秒前
dan1029发布了新的文献求助10
39秒前
dan1029发布了新的文献求助10
39秒前
dan1029发布了新的文献求助10
39秒前
TTT完成签到,获得积分10
41秒前
光能使者完成签到,获得积分10
41秒前
SPLjoker完成签到 ,获得积分10
44秒前
wao完成签到 ,获得积分10
46秒前
圆彰七大完成签到 ,获得积分10
47秒前
wenhao完成签到 ,获得积分10
51秒前
酱豆豆完成签到 ,获得积分10
53秒前
河鲸完成签到 ,获得积分10
56秒前
inz完成签到,获得积分10
59秒前
葡紫明完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777535
求助须知:如何正确求助?哪些是违规求助? 3322919
关于积分的说明 10212363
捐赠科研通 3038238
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201