Probabilistic physics-guided machine learning for fatigue data analysis

概率逻辑 机器学习 人工智能 计算机科学 数据科学
作者
Jie Chen,Yongming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:168: 114316-114316 被引量:117
标识
DOI:10.1016/j.eswa.2020.114316
摘要

A Probabilistic Physics-guided Neural Network (PPgNN) is proposed in this paper for probabilistic fatigue S-N curve estimation. The proposed model overcomes the limitations in existing parametric regression models and classical machine learning models for fatigue data analysis. Compared with explicit regression-type models (such as power law fitting), the PPgNN is flexible and does not impose restrictions on function types at different stress levels, mean stresses, or other factors. One unique benefit is that the proposed method includes the known physics/knowledge constraints in the machine learning model; the method can produce both accurate and physically consistent results compared with the classical machine learning model, such as neural network models. In addition, the PPgNN uses both failure and runout data in the training process, which encodes the runout data using a new proposed loss function, and is beneficial when compared with some existing models using only numerical point value data. A mathematical formulation is derived to include different types of physics constraints, which can deal with mean value, variance, and derivative/curvature constraints. Several data sets from open literature for fatigue S-N curve testing are used for model demonstration and model validation. Next, the proposed network architecture is extended to include multi-factor (e.g., mean stress, corrosion, frequency effect, etc.) fatigue data analysis. It is shown that the proposed PPgNN can serve as a flexible and robust model for general fitting and uncertainty quantification of fatigue data. This paper provides a feasible way to incorporate known physics/knowledge in neural network-based machine learning. This is achieved by properly designing the network topology and constraining the neural network’s biases and weights. The benefits for the proposed physics-guided learning for fatigue data analysis are illustrated by comparing results from neural network models with and without physics guidance. The neural network model, without physics guidance, produces results contradictory to the common knowledge, such as a monotonic decrease of S-N curve slope and a monotonic increase of fatigue life variance as the stress level decreases. This problem can be avoided using the physics-guided learning model with encoded prior physics knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴的乐巧完成签到 ,获得积分10
刚刚
刚刚
buding发布了新的文献求助10
1秒前
1秒前
2秒前
Wang发布了新的文献求助10
2秒前
2秒前
BK完成签到,获得积分10
2秒前
Bigbiglei完成签到,获得积分10
3秒前
张欣祖关注了科研通微信公众号
3秒前
xiaoxi发布了新的文献求助20
3秒前
3秒前
tanghong完成签到,获得积分10
4秒前
5秒前
爆米花应助鲜艳的可愁采纳,获得10
5秒前
5秒前
奶味蓝完成签到,获得积分10
5秒前
JunJun发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
徒花发布了新的文献求助10
7秒前
科研通AI2S应助SQDHZJ采纳,获得10
7秒前
Hcollide发布了新的文献求助10
7秒前
gu完成签到,获得积分10
8秒前
8秒前
beibei完成签到,获得积分10
8秒前
星辰大海应助水蜜桃幽灵采纳,获得10
8秒前
shengsheng旭完成签到,获得积分10
8秒前
benli发布了新的文献求助10
9秒前
茉莉完成签到,获得积分10
9秒前
小Y完成签到,获得积分10
9秒前
超声波完成签到,获得积分10
10秒前
心灵美半邪完成签到,获得积分10
10秒前
10秒前
kkx发布了新的文献求助10
10秒前
lina完成签到,获得积分10
10秒前
10秒前
小二郎应助hanshuo4400采纳,获得10
11秒前
科研通AI5应助若俗人采纳,获得10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788937
求助须知:如何正确求助?哪些是违规求助? 3334056
关于积分的说明 10266847
捐赠科研通 3050269
什么是DOI,文献DOI怎么找? 1673953
邀请新用户注册赠送积分活动 802337
科研通“疑难数据库(出版商)”最低求助积分说明 760570