亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:42
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
p13508397190发布了新的文献求助30
3秒前
xjian完成签到,获得积分10
6秒前
酷波er应助三和小神采纳,获得10
7秒前
晚意意意意意完成签到 ,获得积分10
10秒前
谦让的西装完成签到 ,获得积分10
11秒前
25秒前
25秒前
p13508397190完成签到,获得积分10
25秒前
33秒前
刘小小发布了新的文献求助10
35秒前
围城完成签到 ,获得积分10
36秒前
37秒前
44秒前
tiantian0518完成签到 ,获得积分10
44秒前
三和小神发布了新的文献求助10
49秒前
1分钟前
1分钟前
1分钟前
人间月色发布了新的文献求助20
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
善学以致用应助三和小神采纳,获得10
1分钟前
violet发布了新的文献求助10
1分钟前
1分钟前
绝尘发布了新的文献求助10
1分钟前
William_l_c完成签到,获得积分10
1分钟前
1分钟前
FelixChen应助William_l_c采纳,获得10
1分钟前
一二三砰完成签到,获得积分10
1分钟前
生物科研小白完成签到 ,获得积分10
1分钟前
1分钟前
xiao_niu完成签到,获得积分10
1分钟前
1分钟前
bing完成签到 ,获得积分10
1分钟前
糖葫芦发布了新的文献求助10
1分钟前
暮沐晓光完成签到,获得积分10
1分钟前
1分钟前
密码小白完成签到,获得积分10
1分钟前
糖葫芦完成签到,获得积分10
1分钟前
1分钟前
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346402
关于积分的说明 10329217
捐赠科研通 3062864
什么是DOI,文献DOI怎么找? 1681220
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702