亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis

催化作用 格式化 二氧化碳电化学还原 电催化剂 氧化还原 太阳能燃料 化学 电子转移 碳纤维 化学工程 无机化学 材料科学 纳米技术 电化学 光化学 一氧化碳 电极 有机化学 物理化学 工程类 光催化 复合材料 复合数
作者
Sheng Zhang,Qun Fan,Rong Xia,Thomas J. Meyer
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (1): 255-264 被引量:550
标识
DOI:10.1021/acs.accounts.9b00496
摘要

Due to increasing worldwide fossil fuel consumption, carbon dioxide levels have increased in the atmosphere with increasingly important impacts on the environment. Renewable and clean sources of energy have been proposed, including wind and solar, but they are intermittent and require efficient and scalable energy storage technologies. Electrochemical CO2 reduction reaction (CO2RR) provides a valuable approach in this area. It combines solar- or wind-generated electrical production with energy storage in the chemical bonds of carbon-based fuels. It can provide ways to integrate carbon capture, utilization, and storage in energy cycles while maintaining controlled levels of atmospheric CO2. Electrochemistry allows for the utilization of an electrical input to drive chemical reactions. Because CO2 is kinetically inert, highly active catalysts are required to decrease reaction barriers sufficiently so that reaction rates can be achieved that are sufficient for electrochemical CO2 reduction. Given the reaction barriers associated with multiple electron-proton reduction of CO2 to CO, formaldehyde (HC(O)H), formic acid, or formate (HC(O)OH, HC(O)O-), or more highly reduced forms of carbon, there is also a demand for high selectivity in catalysis. Catalysts that have been explored include homogeneous catalysts in solution, catalysts immobilized on surfaces, and heterogeneous catalysts. In homogeneous catalysis, reduction occurs following diffusion of the catalyst to an electrode where multiple proton coupled electron transfer reduction occurs. Useful catalysts in this area are typically transition-metal complexes with organic ligands and electron transfer properties that utilize combinations of metal and ligand redox levels. As a way to limit the amount of catalyst, in device-like configurations, catalysts are added to the surfaces of conductive substrates by surface binding, in polymeric films, or on carbon electrode surfaces with molecular structures and electronic configurations related to catalysts in solution. Immobilized, homogeneous catalysts can suffer from performance losses and even decomposition during long-term CO2 reduction cycles, but they are amenable to detailed mechanistic investigations. In parallel efforts, heterogeneous nanocatalysts have been explored in detail with the development of facile synthetic procedures that can offer highly active catalytic surface areas. Their high activity and stability have attracted a significant level of investigation, including possible exploitation for large-scale applications. However, translation of catalytic reactivity to the surface creates a new reactivity environment and complicates the elucidation of mechanistic details and identification of the active site in exploring reaction pathways. Here, the results of previous studies based on transition-metal complex catalysts for CO2 electroreduction are summarized. Early studies showed that transition-metal complexes of Ru, Ir, Rh, and Os, with well-defined structures, are all capable of catalyzing CO2 reduction to CO or formate. Derivatives of the complexes were surface attached to conducting electrodes by chemical bonding, noncovalent bonding, or polymerization. The concept of surface binding has also been extended to the preparation of surface area electrodes by the chemically controlled deposition of nanostructured catalysts such as nano tin, nano copper, and nano carbon, all of which have been shown to have high selectivities and activities toward CO2 reduction. In our presentation, we end this Account with recent advances and a perspective about the application of electrocatalysis in carbon dioxide reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助科研通管家采纳,获得20
23秒前
假面绅士完成签到,获得积分10
24秒前
44秒前
丘比特应助TiAmo采纳,获得10
45秒前
kei完成签到 ,获得积分10
47秒前
51秒前
ccccx发布了新的文献求助10
52秒前
TiAmo发布了新的文献求助10
57秒前
1分钟前
尼龙niuniu完成签到,获得积分20
1分钟前
尼龙niuniu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
liaoliao发布了新的文献求助10
1分钟前
可爱的函函应助尼龙niuniu采纳,获得10
1分钟前
科研通AI2S应助羊z采纳,获得20
2分钟前
加缪应助ccccx采纳,获得30
2分钟前
2分钟前
英姑应助ccccx采纳,获得10
2分钟前
叶凡发布了新的文献求助10
2分钟前
2分钟前
2分钟前
叶凡完成签到 ,获得积分10
2分钟前
ccczzz应助ccccx采纳,获得10
2分钟前
2分钟前
3分钟前
NexusExplorer应助伍次友采纳,获得10
3分钟前
3分钟前
球球发布了新的文献求助10
3分钟前
szx233完成签到 ,获得积分10
3分钟前
琳io完成签到 ,获得积分10
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
加缪完成签到,获得积分0
3分钟前
迷人的天抒完成签到 ,获得积分10
3分钟前
3分钟前
晴雨天完成签到 ,获得积分10
3分钟前
ccccx发布了新的文献求助10
3分钟前
3分钟前
羊z发布了新的文献求助20
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077548
求助须知:如何正确求助?哪些是违规求助? 4296577
关于积分的说明 13387168
捐赠科研通 4119043
什么是DOI,文献DOI怎么找? 2255656
邀请新用户注册赠送积分活动 1260024
关于科研通互助平台的介绍 1193363