CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis

催化作用 格式化 二氧化碳电化学还原 电催化剂 氧化还原 太阳能燃料 化学 电子转移 碳纤维 化学工程 无机化学 材料科学 纳米技术 电化学 光化学 一氧化碳 电极 有机化学 物理化学 复合材料 工程类 复合数 光催化
作者
Sheng Zhang,Qun Fan,Rong Xia,Thomas J. Meyer
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (1): 255-264 被引量:520
标识
DOI:10.1021/acs.accounts.9b00496
摘要

Due to increasing worldwide fossil fuel consumption, carbon dioxide levels have increased in the atmosphere with increasingly important impacts on the environment. Renewable and clean sources of energy have been proposed, including wind and solar, but they are intermittent and require efficient and scalable energy storage technologies. Electrochemical CO2 reduction reaction (CO2RR) provides a valuable approach in this area. It combines solar- or wind-generated electrical production with energy storage in the chemical bonds of carbon-based fuels. It can provide ways to integrate carbon capture, utilization, and storage in energy cycles while maintaining controlled levels of atmospheric CO2. Electrochemistry allows for the utilization of an electrical input to drive chemical reactions. Because CO2 is kinetically inert, highly active catalysts are required to decrease reaction barriers sufficiently so that reaction rates can be achieved that are sufficient for electrochemical CO2 reduction. Given the reaction barriers associated with multiple electron-proton reduction of CO2 to CO, formaldehyde (HC(O)H), formic acid, or formate (HC(O)OH, HC(O)O-), or more highly reduced forms of carbon, there is also a demand for high selectivity in catalysis. Catalysts that have been explored include homogeneous catalysts in solution, catalysts immobilized on surfaces, and heterogeneous catalysts. In homogeneous catalysis, reduction occurs following diffusion of the catalyst to an electrode where multiple proton coupled electron transfer reduction occurs. Useful catalysts in this area are typically transition-metal complexes with organic ligands and electron transfer properties that utilize combinations of metal and ligand redox levels. As a way to limit the amount of catalyst, in device-like configurations, catalysts are added to the surfaces of conductive substrates by surface binding, in polymeric films, or on carbon electrode surfaces with molecular structures and electronic configurations related to catalysts in solution. Immobilized, homogeneous catalysts can suffer from performance losses and even decomposition during long-term CO2 reduction cycles, but they are amenable to detailed mechanistic investigations. In parallel efforts, heterogeneous nanocatalysts have been explored in detail with the development of facile synthetic procedures that can offer highly active catalytic surface areas. Their high activity and stability have attracted a significant level of investigation, including possible exploitation for large-scale applications. However, translation of catalytic reactivity to the surface creates a new reactivity environment and complicates the elucidation of mechanistic details and identification of the active site in exploring reaction pathways. Here, the results of previous studies based on transition-metal complex catalysts for CO2 electroreduction are summarized. Early studies showed that transition-metal complexes of Ru, Ir, Rh, and Os, with well-defined structures, are all capable of catalyzing CO2 reduction to CO or formate. Derivatives of the complexes were surface attached to conducting electrodes by chemical bonding, noncovalent bonding, or polymerization. The concept of surface binding has also been extended to the preparation of surface area electrodes by the chemically controlled deposition of nanostructured catalysts such as nano tin, nano copper, and nano carbon, all of which have been shown to have high selectivities and activities toward CO2 reduction. In our presentation, we end this Account with recent advances and a perspective about the application of electrocatalysis in carbon dioxide reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研饼完成签到,获得积分10
6秒前
ZR666888完成签到,获得积分10
9秒前
ChemPhys完成签到 ,获得积分10
10秒前
bc应助锦秋采纳,获得30
15秒前
mumufan完成签到,获得积分10
15秒前
21秒前
PU聚氨酯完成签到,获得积分10
27秒前
阿梅梅梅发布了新的文献求助10
27秒前
30秒前
科研通AI5应助zhangyx采纳,获得30
32秒前
yyx发布了新的文献求助30
33秒前
alan Zhu发布了新的文献求助20
33秒前
flyfish完成签到 ,获得积分10
34秒前
Soir完成签到 ,获得积分10
36秒前
pluto应助悦耳的惜海采纳,获得50
37秒前
香蕉觅云应助卡卡咧咧采纳,获得10
38秒前
40秒前
谦让涵菡完成签到 ,获得积分10
41秒前
zzh完成签到,获得积分20
43秒前
zjkzh完成签到,获得积分10
43秒前
zzh发布了新的文献求助10
46秒前
46秒前
52秒前
orixero应助称心的绿竹采纳,获得30
54秒前
高c发布了新的文献求助10
55秒前
开坦克的贝塔完成签到,获得积分10
55秒前
叫我益达完成签到,获得积分10
59秒前
1分钟前
1分钟前
初雪完成签到,获得积分10
1分钟前
1分钟前
gyh发布了新的文献求助10
1分钟前
日出发布了新的文献求助10
1分钟前
1分钟前
LSY28发布了新的文献求助10
1分钟前
英姑应助日出采纳,获得10
1分钟前
lzq完成签到 ,获得积分10
1分钟前
LiLYzY_发布了新的文献求助10
1分钟前
1分钟前
yyx关闭了yyx文献求助
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778950
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218960
捐赠科研通 3039564
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440