亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs

多元统计 线性回归 回归 数学 回归分析 计算机科学 蒸散量 水文学(农业) 校准 降水
作者
Rana Muhammad Adnan,Zhongmin Liang,Salim Heddam,Mohammad Zounemat-Kermani,Ozgur Kisi,Binquan Li
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:586: 124371- 被引量:77
标识
DOI:10.1016/j.jhydrol.2019.124371
摘要

Abstract Monthly streamflow prediction is very important for many hydrological applications in providing information for optimal use of water resources. In this study, the prediction accuracy of new heuristic methods, optimally pruned extreme learning machine (OP-ELM), least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree), is examined in modeling monthly streamflows using precipitation and temperature inputs. Data collected from Kalam and Chakdara stations at a mountainous basin, Swat River Basin, Pakistan are utilized as case study. The prediction accuracy of all four methods are validated and tested using four different input scenarios and evaluated using combined accuracy (CA), a newly used criterion in addition to root-mean-square error (RMSE), normalized RMSE, mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE). The test results of both stations show that the LSSVM and MARS-based models provide more accurate prediction results compared to OP-ELM and M5Tree models. LSSVM decreases the RMSE of the MARS, OP-ELM and M5Tree by 9.12%, 25.64% and 35.15% for the Kalam station while the RMSEs of the LSSVM, OP-ELM and M5Tree is decreased by 2.12%, 34.81% and 32.52% using MARS, for the Chakdara Station, respectively. It is observed that the monthly streamflows of Kalam Station can be successfully predicted using only temperature data. Only precipitation inputs also provide good accuracy for Kalam Station while they produce inaccurate predictions for the Chakdara Station. The prediction capabilities of the applied methods are also examined in estimating streamflow of downstream station using upstream data. The results prove the dominancy of LSSVM and MARS-based models over OP-ELM and M5Tree in prediction streamflow data without local input data. Heuristic methods are also compared with stochastic method of seasonal auto regressive moving average (SARIMA). The OP-ELM, LSSVM, MARS perform superior to the SARIMA in monthly streamflow prediction. Based on the overall results, the LSSVM and MARS are recommended for monthly streamflow prediction with or without local data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
您疼肚发布了新的文献求助10
3秒前
夜雨声烦完成签到,获得积分10
4秒前
科研通AI5应助您疼肚采纳,获得10
9秒前
您疼肚完成签到,获得积分20
13秒前
鸡蛋包土豆儿完成签到,获得积分10
14秒前
zhao完成签到 ,获得积分10
17秒前
17秒前
所所应助紫翼采纳,获得30
19秒前
小布丁发布了新的文献求助10
23秒前
29秒前
lqy完成签到,获得积分20
30秒前
无花果应助小布丁采纳,获得10
30秒前
lqy发布了新的文献求助10
32秒前
40秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bkagyin应助qiuqiutantan采纳,获得10
1分钟前
Jasper应助wafo采纳,获得10
2分钟前
2分钟前
坦率大米完成签到,获得积分10
2分钟前
科研通AI5应助dahai采纳,获得10
2分钟前
2分钟前
小布丁发布了新的文献求助10
2分钟前
2分钟前
小布丁完成签到,获得积分10
2分钟前
qiuqiutantan发布了新的文献求助10
2分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
wafo发布了新的文献求助10
3分钟前
开心夏真完成签到,获得积分10
3分钟前
文欣完成签到 ,获得积分10
3分钟前
深情安青应助只爱吃肠粉采纳,获得10
3分钟前
4分钟前
Nichols完成签到,获得积分10
4分钟前
4分钟前
Lee发布了新的文献求助10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10359966
捐赠科研通 3068705
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022