RGB颜色模型
索贝尔算子
人工智能
人工神经网络
计算机科学
反向传播
萃取(化学)
边缘检测
模式识别(心理学)
计算机视觉
图像处理
化学
色谱法
图像(数学)
作者
Arie Qur’ania,Prihastuti Harsani,Triastinurmiatiningsih Triastinurmiatiningsih,Lili Ayu Wulandhari,Alexander Agung Santoso Gunawan
出处
期刊:Commit Journal
[Bina Nusantara University]
日期:2020-05-31
卷期号:14 (1): 23-23
被引量:7
标识
DOI:10.21512/commit.v14i1.5952
摘要
The research aims to detect the combined deficiency of two nutrients. Those are nitrogen (N) and phosphorus (P), and phosphorus and potassium (K). Here, it is referred to as nutrient deficiencies of N and Pand P and K. The r esearchers use the characteristics of Red, Green, Blue (RGB) color and Sobel edge detection for leaf shape detection and Artificial Neural Networks (ANN) for the identification process to make the application of nutrient differentiation identification in cucumber. The data of plant images consist of 450 training data and 150 testing data. The results of identifying nutrient deficiencies in plants using backpropagation neural networks are carried out in three tests. First, using RGB color extraction and Sobel edge detection, the researchers show 65.36% accuracy. Second, using RGB color extraction, it has 70.25% accuracy. Last, with Sobel edge detection, it has 59.52% accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI