Cascade Reasoning Network for Text-based Visual Question Answering

答疑 计算机科学 人工智能 视觉推理 自然语言处理 过程(计算) 编码(内存) 情报检索 程序设计语言
作者
Fen Liu,Guanghui Xu,Qi Wu,Qing Du,Jia Wei,Mingkui Tan
标识
DOI:10.1145/3394171.3413924
摘要

We study the problem of text-based visual question answering (T-VQA) in this paper. Unlike general visual question answering (VQA) which only builds connections between questions and visual contents, T-VQA requires reading and reasoning over both texts and visual concepts that appear in images. Challenges in T-VQA mainly lie in three aspects: 1) It is difficult to understand the complex logic in questions and extract specific useful information from rich image contents to answer them; 2) The text-related questions are also related to visual concepts, but it is difficult to capture cross-modal relationships between the texts and the visual concepts; 3) If the OCR (optical character recognition) system fails to detect the target text, the training will be very difficult. To address these issues, we propose a novel Cascade Reasoning Network (CRN) that consists of a progressive attention module (PAM) and a multimodal reasoning graph (MRG) module. Specifically, the PAM regards the multimodal information fusion operation as a stepwise encoding process and uses the previous attention results to guide the next fusion process. The MRG aims to explicitly model the connections and interactions between texts and visual concepts. To alleviate the dependence on the OCR system, we introduce an auxiliary task to train the model with accurate supervision signals, thereby enhancing the reasoning ability of the model in question answering. Extensive experiments on three popular T-VQA datasets demonstrate the effectiveness of our method compared with SOTA methods. The source code is available at https://github.com/guanghuixu/CRN_tvqa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
courage发布了新的文献求助50
刚刚
chodiernal发布了新的文献求助10
1秒前
科研通AI2S应助jtyt采纳,获得10
1秒前
立子发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
zzh319完成签到,获得积分10
3秒前
yyc完成签到,获得积分10
3秒前
wendyli完成签到,获得积分10
4秒前
6秒前
整齐画板发布了新的文献求助10
6秒前
介子发布了新的文献求助10
7秒前
英姑应助yao采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助150
8秒前
9秒前
浮游应助一生万物采纳,获得10
9秒前
san发布了新的文献求助10
10秒前
12秒前
JachinHe完成签到,获得积分10
13秒前
天天快乐应助lvsehx采纳,获得10
14秒前
17秒前
千夜冰柠萌完成签到,获得积分10
17秒前
orixero应助黛黛超棒嘟采纳,获得10
17秒前
19秒前
19秒前
王若菡发布了新的文献求助10
19秒前
19秒前
炫酷的雨完成签到,获得积分10
20秒前
小巧静珊完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助150
21秒前
桢桢树完成签到 ,获得积分10
21秒前
21秒前
yao发布了新的文献求助10
23秒前
星尘完成签到 ,获得积分10
23秒前
鲤鱼鑫磊发布了新的文献求助10
25秒前
TING完成签到,获得积分10
25秒前
25秒前
英俊的铭应助ZRR采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040