Large-scale augmented Granger causality (lsAGC) for connectivity analysis in complex systems: from computer simulations to functional MRI (fMRI)

计算机科学 静息状态功能磁共振成像 功能连接 人工智能 功能磁共振成像
作者
Axel Wismüller,M. Ali Vosoughi
标识
DOI:10.1117/12.2582152
摘要

We introduce large-scale Augmented Granger Causality (lsAGC) as a method for connectivity analysis in complex systems. The lsAGC algorithm combines dimension reduction with source time-series augmentation and uses predictive time-series modeling for estimating directed causal relationships among time-series. This method is a multivariate approach, since it is capable of identifying the influence of each time-series on any other time-series in the presence of all other time-series of the underlying dynamic system. We quantitatively evaluate the performance of lsAGC on synthetic directional time-series networks with known ground truth. As a reference method, we compare our results with cross-correlation, which is typically used as a standard measure of connectivity in the functional MRI (fMRI) literature. Using extensive simulations for a wide range of time-series lengths and two different signal-to-noise ratios of 5 and 15 dB, lsAGC consistently outperforms cross-correlation at accurately detecting network connections, using Receiver Operator Characteristic Curve (ROC) analysis, across all tested time-series lengths and noise levels. In addition, as an outlook to possible clinical application, we perform a preliminary qualitative analysis of connectivity matrices for fMRI data of Autism Spectrum Disorder (ASD) patients and typical controls, using a subset of 59 subjects of the Autism Brain Imaging Data Exchange II (ABIDE II) data repository. Our results suggest that lsAGC, by extracting sparse connectivity matrices, may be useful for network analysis in complex systems, and may be applicable to clinical fMRI analysis in future research, such as targeting disease-related classification or regression tasks on clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
浮游应助Hdhv采纳,获得10
1秒前
totoro发布了新的文献求助10
2秒前
馆长应助Lili采纳,获得30
2秒前
Sponge发布了新的文献求助10
2秒前
Efficient发布了新的文献求助10
3秒前
刘娅完成签到,获得积分10
3秒前
mochi完成签到,获得积分10
3秒前
周富贵完成签到,获得积分10
3秒前
085400发布了新的文献求助10
3秒前
星光发布了新的文献求助10
4秒前
future完成签到 ,获得积分10
4秒前
CodeCraft应助斯文的一江采纳,获得10
5秒前
7秒前
钟程飞关注了科研通微信公众号
8秒前
会飞的猪qq完成签到,获得积分10
8秒前
李健的小迷弟应助ruiruili采纳,获得10
8秒前
ZzoKk发布了新的文献求助10
8秒前
囹圄1106完成签到,获得积分20
8秒前
11秒前
高挑的书南关注了科研通微信公众号
12秒前
活泼冬天完成签到,获得积分10
12秒前
foreverwhy完成签到 ,获得积分10
12秒前
勤耕苦读发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
鬼鬼完成签到,获得积分10
13秒前
科研通AI5应助端庄的雁易采纳,获得30
14秒前
14秒前
14秒前
DrW完成签到,获得积分10
15秒前
英姑应助谢图迎采纳,获得10
16秒前
无语的蜗牛完成签到 ,获得积分10
16秒前
rattlebox321完成签到,获得积分0
16秒前
李洪浪发布了新的文献求助10
18秒前
亿眼万年完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4678096
求助须知:如何正确求助?哪些是违规求助? 4055126
关于积分的说明 12539338
捐赠科研通 3749508
什么是DOI,文献DOI怎么找? 2071025
邀请新用户注册赠送积分活动 1100012
科研通“疑难数据库(出版商)”最低求助积分说明 979537