化学
激发态
发色团
齿合度
光化学
基态
卡宾
协调球
吸收光谱法
桥联配体
配体(生物化学)
结晶学
原子物理学
晶体结构
催化作用
有机化学
生物化学
物理
受体
量子力学
作者
Bryan C. Paulus,Karl C. Nielsen,Christopher R. Tichnell,Monica C. Carey,James K. McCusker
摘要
The development of chromophores based on earth-abundant transition metals whose photophysical properties are dominated by their charge-transfer excited states has inspired considerable research over the past decade. One challenge associated with this effort is satisfying the dual requirements of a strong ligand field and chemical tunability of the compound's absorptive cross-section. Herein we explore one possible approach using a heteroleptic compositional motif that combines both of these attributes into a single compound. With the parent complex [Fe(phen)3]2+ (1; where phen is 1,10-phenanthroline) as the starting material, replacement of one of the phen ligands for two cyanides to obtain Fe(phen)2(CN)2 (2) allows for conversion to [Fe(phen)2(C4H10N4)]2+ (3), a six-coordinate Fe(II) complex whose coordination sphere consists of two chelating polypyridyl ligands and one bidentate carbene-based donor. Ground-state absorption spectra of all three compounds exhibit 1A1 → 1MLCT transition(s) associated with the phen ligands that are relatively insensitive to the identity of the third counterligand(s). Ultrafast time-resolved electronic absorption measurements revealed lifetimes for the MLCT excited states of compounds 1 and 2 of 180 ± 30 and 250 ± 90 fs, respectively, values that are typical for iron(II)-based polypyridyl complexes. The corresponding kinetics for compound 3 were substantially slower at 7.4 ± 0.9 ps; the spectral evolution associated with these dynamics confirms that these kinetics are tracking the MLCT excited state and, more importantly, are coupled to ground-state recovery from this excited state. The data are interpreted in terms of a modulation of the relative energies of the MLCT and ligand-field states across the series, leading to a systematic destabilization of metal-localized ligand-field excited states such that the low-energy portions of the charge-transfer and ligand-field manifolds are at or near an energetic inversion point in compound 3. We believe these results illustrate the potential for a modular, orthogonal approach to chromophore design in which part of the coordination sphere can be targeted for light absorption while another can be used to tune electronic-state energetics.
科研通智能强力驱动
Strongly Powered by AbleSci AI