亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hand Posture and Force Estimation Using Surface Electromyography and an Artificial Neural Network

肌电图 人工神经网络 模拟 物理医学与康复 计算机科学 人工智能 工程类 医学
作者
Mengcheng Wang,Chuan Zhao,Alan Barr,Hao Fan,Suihuai Yu,Jay Kapellusch,Carisa Harris‐Adamson
出处
期刊:Human Factors [SAGE Publishing]
卷期号:65 (3): 382-402 被引量:9
标识
DOI:10.1177/00187208211016695
摘要

Objective The purpose of this study was to develop an approach to predict hand posture (pinch versus grip) and grasp force using forearm surface electromyography (sEMG) and artificial neural networks (ANNs) during tasks that varied repetition rate and duty cycle. Background Prior studies have used electromyography with machine learning models to predict grip force but relatively few studies have assessed whether both hand posture and force can be predicted, particularly at varying levels of duty cycle and repetition rate. Method Fourteen individuals participated in this experiment. sEMG data for five forearm muscles and force output data were collected. Calibration data (25, 50, 75, 100% of maximum voluntary contraction (MVC)) were used to train ANN models to predict hand posture (pinch versus grip) and force magnitude while performing tasks that varied load, repetition rate, and duty cycle. Results Across all participants, overall hand posture prediction accuracy was 79% (0.79 ± .08), whereas overall hand force prediction accuracy was 73% (0.73 ± .09). Accuracy ranged between 0.65 and 0.93 based on varying repetition rate and duty cycle. Conclusion Hand posture and force prediction were possible using sEMG and ANNs, though there were important differences in the accuracy of predictions based on task characteristics including duty cycle and repetition rate. Application The results of this study could be applied to the development of a dosimeter used for distal upper extremity biomechanical exposure measurement, risk assessment, job (re)design, and return to work programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘辰完成签到 ,获得积分10
30秒前
上官若男应助ppp采纳,获得10
35秒前
wyj完成签到,获得积分10
37秒前
Elvira完成签到,获得积分10
1分钟前
华仔应助孟繁荣采纳,获得10
1分钟前
完美世界应助eth采纳,获得10
1分钟前
1分钟前
SciGPT应助wyj采纳,获得10
1分钟前
Bov完成签到,获得积分10
1分钟前
ppp发布了新的文献求助10
1分钟前
1分钟前
孟繁荣发布了新的文献求助10
1分钟前
ppp完成签到,获得积分10
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
孟繁荣完成签到,获得积分10
1分钟前
1分钟前
Bov发布了新的文献求助10
1分钟前
wyj发布了新的文献求助10
1分钟前
深情安青应助科研通管家采纳,获得30
1分钟前
1分钟前
eth发布了新的文献求助10
1分钟前
迷人的冬莲完成签到 ,获得积分10
2分钟前
Bov关注了科研通微信公众号
2分钟前
2分钟前
Johnason_ZC完成签到 ,获得积分10
2分钟前
一块芋头完成签到,获得积分10
2分钟前
DUDU完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
呆萌黑猫发布了新的文献求助10
4分钟前
Otter完成签到,获得积分10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
eric888完成签到,获得积分0
4分钟前
4分钟前
dynamoo完成签到,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4763937
求助须知:如何正确求助?哪些是违规求助? 4102684
关于积分的说明 12694092
捐赠科研通 3819550
什么是DOI,文献DOI怎么找? 2108241
邀请新用户注册赠送积分活动 1132751
关于科研通互助平台的介绍 1012451