已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection

计算机科学 误传 新闻聚合器 代表(政治) 阅读(过程) 社会化媒体 联营 特征(语言学) 情报检索 人工智能 万维网 计算机安全 哲学 法学 政治 语言学 政治学
作者
Rina Kumari,Asif Ekbal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:184: 115412-115412 被引量:83
标识
DOI:10.1016/j.eswa.2021.115412
摘要

Fake news is the information or stories that are intentionally created to deceive or mislead the readers. In recent times, Fake news detection has attracted the attention of researchers and practitioners due to its many-fold benefits, including bringing in preventive measures to tackle the dissemination of misinformation that could otherwise disturb the social fabrics. Social media in recent times are heavily loaded with multimedia news and information. People prefer online news reading and find it more informative and convenient if they have access to multimedia content in the forms of text, images, audio, and videos. In early studies, researchers have proposed several fake news detection mechanisms that mostly utilize the textual features and not proper to learn multimodal (textual + visual) shared representation. To overcome these limitations, in this paper, we propose a multimodal fake news detection framework with appropriate multimodal feature fusion that leverages information from text and image and tries to maximize the correlation between them to get the efficient multimodal shared representation. We empirically show that text, when combined with the image, can improve the performance of the model. The model detects the post once it is introduced into the network in an early stage. At the early stage of a news post’s introduction into the network, the model takes the text and image of the post as input and decides whether this is fake or genuine. Since this model only analyzes news contents, It does not require any prior information regarding the user and network details. This framework has four different sub-modules viz. Attention Based Stacked Bidirectional Long Short Term Memory (ABS-BiLSTM) for textual feature representation, Attention Based Multilevel Convolutional Neural Network–Recurrent Neural Network (ABM-CNN–RNN) for visual feature extraction, multimodal Factorized Bilinear Pooling (MFB) for feature fusion and finally Multi-Layer Perceptron (MLP) for the classification. We perform experiments on two publicly available datasets, viz. Twitter and Weibo. Evaluation results show the efficacy of our proposed approach that performs significantly better compared to the state-of-the-art models. It shows to outperform the current state-of-the-art by approximately 10 points for the Twitter dataset. In contrast, the Weibo dataset achieves an overall better performance with balanced F1-scores between fake and real classes. Furthermore, the complexity of our proposed model is significantly lower than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rjy完成签到 ,获得积分10
1秒前
凤里完成签到 ,获得积分10
3秒前
Joey完成签到,获得积分20
5秒前
Limerencia完成签到,获得积分10
5秒前
吴谷杂粮完成签到 ,获得积分10
6秒前
乳酸菌小面包完成签到,获得积分10
7秒前
Kevin完成签到,获得积分10
9秒前
rrjl完成签到,获得积分10
11秒前
不爱冒泡的气泡水完成签到 ,获得积分10
12秒前
湛刘佳完成签到 ,获得积分10
15秒前
华仔应助纯真的无声采纳,获得10
16秒前
无与伦比完成签到 ,获得积分10
16秒前
鲍文启完成签到 ,获得积分10
17秒前
Rebeccaiscute完成签到 ,获得积分10
17秒前
千倾完成签到 ,获得积分10
19秒前
洁净的向南完成签到 ,获得积分10
19秒前
代代完成签到 ,获得积分10
20秒前
23秒前
23秒前
24秒前
mfy完成签到,获得积分10
26秒前
illuminate完成签到,获得积分10
27秒前
波博士关注了科研通微信公众号
28秒前
zho应助星夜采纳,获得10
28秒前
mfy发布了新的文献求助10
28秒前
hahahan完成签到 ,获得积分10
28秒前
jessie完成签到 ,获得积分10
30秒前
34秒前
yys10l完成签到,获得积分10
35秒前
严明完成签到,获得积分10
36秒前
严明完成签到,获得积分10
36秒前
溯溯完成签到 ,获得积分10
36秒前
程风破浪完成签到,获得积分10
38秒前
义气幼珊完成签到 ,获得积分10
39秒前
39秒前
心灵美语兰完成签到 ,获得积分10
40秒前
42秒前
儒雅一凤完成签到 ,获得积分10
42秒前
程风破浪发布了新的文献求助10
43秒前
SciGPT应助花花采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777535
求助须知:如何正确求助?哪些是违规求助? 3322905
关于积分的说明 10212336
捐赠科研通 3038238
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201