亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection

计算机科学 误传 新闻聚合器 代表(政治) 阅读(过程) 社会化媒体 联营 特征(语言学) 情报检索 人工智能 万维网 计算机安全 哲学 法学 政治 语言学 政治学
作者
Rina Kumari,Asif Ekbal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:184: 115412-115412 被引量:104
标识
DOI:10.1016/j.eswa.2021.115412
摘要

Fake news is the information or stories that are intentionally created to deceive or mislead the readers. In recent times, Fake news detection has attracted the attention of researchers and practitioners due to its many-fold benefits, including bringing in preventive measures to tackle the dissemination of misinformation that could otherwise disturb the social fabrics. Social media in recent times are heavily loaded with multimedia news and information. People prefer online news reading and find it more informative and convenient if they have access to multimedia content in the forms of text, images, audio, and videos. In early studies, researchers have proposed several fake news detection mechanisms that mostly utilize the textual features and not proper to learn multimodal (textual + visual) shared representation. To overcome these limitations, in this paper, we propose a multimodal fake news detection framework with appropriate multimodal feature fusion that leverages information from text and image and tries to maximize the correlation between them to get the efficient multimodal shared representation. We empirically show that text, when combined with the image, can improve the performance of the model. The model detects the post once it is introduced into the network in an early stage. At the early stage of a news post’s introduction into the network, the model takes the text and image of the post as input and decides whether this is fake or genuine. Since this model only analyzes news contents, It does not require any prior information regarding the user and network details. This framework has four different sub-modules viz. Attention Based Stacked Bidirectional Long Short Term Memory (ABS-BiLSTM) for textual feature representation, Attention Based Multilevel Convolutional Neural Network–Recurrent Neural Network (ABM-CNN–RNN) for visual feature extraction, multimodal Factorized Bilinear Pooling (MFB) for feature fusion and finally Multi-Layer Perceptron (MLP) for the classification. We perform experiments on two publicly available datasets, viz. Twitter and Weibo. Evaluation results show the efficacy of our proposed approach that performs significantly better compared to the state-of-the-art models. It shows to outperform the current state-of-the-art by approximately 10 points for the Twitter dataset. In contrast, the Weibo dataset achieves an overall better performance with balanced F1-scores between fake and real classes. Furthermore, the complexity of our proposed model is significantly lower than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
ZSN发布了新的文献求助100
18秒前
唐禹嘉完成签到 ,获得积分10
28秒前
yb完成签到,获得积分10
59秒前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
hhr完成签到 ,获得积分10
1分钟前
tj发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
香蕉觅云应助rerorero18采纳,获得10
1分钟前
2分钟前
111发布了新的文献求助10
2分钟前
111完成签到,获得积分20
2分钟前
Libgenxxxx完成签到,获得积分10
2分钟前
2分钟前
AMM应助Jack80采纳,获得80
2分钟前
领导范儿应助今晚喝两杯采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助ZSN采纳,获得10
3分钟前
Hunter发布了新的文献求助10
3分钟前
情怀应助Hunter采纳,获得10
3分钟前
3分钟前
sherly完成签到,获得积分20
3分钟前
sherly发布了新的文献求助20
3分钟前
宅心仁厚完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
蜗牛小霸王完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
rerorero18发布了新的文献求助10
4分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880026
求助须知:如何正确求助?哪些是违规求助? 4166821
关于积分的说明 12927232
捐赠科研通 3925518
什么是DOI,文献DOI怎么找? 2154825
邀请新用户注册赠送积分活动 1172878
关于科研通互助平台的介绍 1076926