Highly accurate protein structure prediction with AlphaFold

蛋白质结构预测 计算机科学 卡斯普 蛋白质结构 线程(蛋白质序列) 人工智能 结构生物信息学 机器学习 计算生物学 人工神经网络 蛋白质超家族 序列(生物学) 功能(生物学) 生物 进化生物学 基因 生物化学 遗传学
作者
John Jumper,K Taki,Alexander Pritzel,Tim Green,Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasuvunakool,Russ Bates,Augustin Žídek,Anna Potapenko,Alex Bridgland,Clemens Meyer,Simon Köhl,Andrew J. Ballard,Andrew Cowie,Bernardino Romera‐Paredes,Stanislav Nikolov,Rishub Jain,Jonas Adler,Trevor Back
出处
期刊:Nature [Nature Portfolio]
卷期号:596 (7873): 583-589 被引量:33590
标识
DOI:10.1038/s41586-021-03819-2
摘要

Abstract Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1–4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6,7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10–14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈王完成签到,获得积分10
刚刚
慕青应助neversay4ever采纳,获得10
刚刚
刚刚
maoyingji发布了新的文献求助10
刚刚
echasl73发布了新的文献求助10
1秒前
Hello应助沉默书蕾采纳,获得10
1秒前
hehe完成签到,获得积分10
1秒前
雷含灵发布了新的文献求助10
1秒前
tuyfytjt发布了新的文献求助10
1秒前
2秒前
小林完成签到 ,获得积分10
2秒前
zcz完成签到,获得积分10
2秒前
2秒前
领导范儿应助考马斯亮蓝采纳,获得10
3秒前
3秒前
亓大大发布了新的文献求助30
3秒前
3秒前
GXM关闭了GXM文献求助
3秒前
4秒前
哈哈王发布了新的文献求助30
4秒前
温言叮叮铛完成签到,获得积分10
4秒前
小王哪跑发布了新的文献求助10
4秒前
4秒前
5秒前
自信的忆文完成签到,获得积分10
5秒前
simple完成签到,获得积分10
5秒前
谢清然发布了新的文献求助30
6秒前
童宝完成签到,获得积分10
6秒前
dididi完成签到,获得积分10
6秒前
乐乐应助111采纳,获得10
6秒前
闪闪凝冬发布了新的文献求助10
7秒前
lyz0123完成签到,获得积分10
7秒前
夜无霜666发布了新的文献求助30
8秒前
8秒前
本心完成签到,获得积分10
8秒前
小王同学完成签到,获得积分10
8秒前
vander完成签到,获得积分10
8秒前
沉静的歌曲完成签到,获得积分10
9秒前
六七发布了新的文献求助10
9秒前
purple发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Absent Here 200
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280