亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Highly accurate protein structure prediction with AlphaFold

蛋白质结构预测 计算机科学 卡斯普 蛋白质结构 线程(蛋白质序列) 人工智能 结构生物信息学 机器学习 计算生物学 人工神经网络 蛋白质超家族 序列(生物学) 功能(生物学) 生物 进化生物学 基因 生物化学 遗传学
作者
John Jumper,K Taki,Alexander Pritzel,Tim Green,Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasuvunakool,Russ Bates,Augustin Žídek,Anna Potapenko,Alex Bridgland,Clemens Meyer,Simon Köhl,Andrew J. Ballard,Andrew Cowie,Bernardino Romera‐Paredes,Stanislav Nikolov,Rishub Jain,Jonas Adler,Trevor Back
出处
期刊:Nature [Springer Nature]
卷期号:596 (7873): 583-589 被引量:39627
标识
DOI:10.1038/s41586-021-03819-2
摘要

Abstract Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1–4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6,7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10–14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的翠彤完成签到 ,获得积分10
刚刚
wyh发布了新的文献求助10
2秒前
qiuqiu应助tracer526采纳,获得10
4秒前
16秒前
16秒前
Murphy完成签到 ,获得积分10
17秒前
李健应助Krismile采纳,获得10
19秒前
仰勒完成签到 ,获得积分10
21秒前
小白果果发布了新的文献求助10
21秒前
小九关注了科研通微信公众号
30秒前
且慢应助LaffiteElla采纳,获得20
34秒前
44秒前
张紫豹完成签到,获得积分20
46秒前
量子星尘发布了新的文献求助10
48秒前
555发布了新的文献求助30
50秒前
研友_VZG7GZ应助张紫豹采纳,获得20
50秒前
51秒前
55秒前
wyh完成签到,获得积分10
59秒前
555完成签到,获得积分10
1分钟前
小二郎应助YU采纳,获得10
1分钟前
1分钟前
渟柠完成签到 ,获得积分10
1分钟前
yu发布了新的文献求助10
1分钟前
1分钟前
Akim应助芋泥采纳,获得10
1分钟前
小钥匙完成签到 ,获得积分10
1分钟前
小马甲应助小白果果采纳,获得10
1分钟前
1分钟前
yu完成签到,获得积分20
1分钟前
动听的雨完成签到,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
Fayeah完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
nihao完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
月子淇应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488409
求助须知:如何正确求助?哪些是违规求助? 4587292
关于积分的说明 14413420
捐赠科研通 4518572
什么是DOI,文献DOI怎么找? 2475929
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434333