Highly accurate protein structure prediction with AlphaFold

蛋白质结构预测 计算机科学 卡斯普 蛋白质结构 线程(蛋白质序列) 人工智能 结构生物信息学 机器学习 计算生物学 人工神经网络 蛋白质超家族 序列(生物学) 功能(生物学) 生物 进化生物学 基因 生物化学 遗传学
作者
John Jumper,Richard Evans,Alexander Pritzel,Tim Green,Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasuvunakool,Russ Bates,Augustin Žídek,Anna Potapenko,Alex Bridgland,Clemens Meyer,Simon Kohl,Andrew J. Ballard,Andrew Cowie,Bernardino Romera‐Paredes,Stanislav Nikolov,Rishub Jain,Jonas Adler,Trevor Back
出处
期刊:Nature [Nature Portfolio]
卷期号:596 (7873): 583-589 被引量:29615
标识
DOI:10.1038/s41586-021-03819-2
摘要

Abstract Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1–4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6,7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10–14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜刀发布了新的文献求助10
刚刚
Orange应助研友_LjMy08采纳,获得10
2秒前
shelemi发布了新的文献求助30
2秒前
苹果麦片完成签到,获得积分10
3秒前
3秒前
yyj完成签到,获得积分10
3秒前
4秒前
安彩青完成签到 ,获得积分10
8秒前
Emper发布了新的文献求助10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
波特卡斯D艾斯完成签到 ,获得积分10
14秒前
15秒前
暮雪残梅完成签到 ,获得积分10
15秒前
16秒前
Meng完成签到,获得积分10
16秒前
17秒前
whole完成签到,获得积分20
17秒前
18秒前
coffee333发布了新的文献求助10
19秒前
zy完成签到,获得积分10
19秒前
菜菜完成签到 ,获得积分10
20秒前
luckkit完成签到 ,获得积分10
21秒前
研友_LjMy08发布了新的文献求助10
22秒前
领导范儿应助zhangxinxin采纳,获得10
22秒前
NexusExplorer应助欢呼流沙采纳,获得10
25秒前
coffee333完成签到,获得积分10
26秒前
26秒前
27秒前
端庄谷南完成签到 ,获得积分10
29秒前
研友_LjMy08完成签到,获得积分10
29秒前
30秒前
shanshan123458完成签到 ,获得积分10
30秒前
善良的剑通应助姜小时采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669