Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks

生成语法 计算机科学 生成设计 过程(计算) 宽带 吸收(声学) 领域(数学) 钥匙(锁) 计算机工程 工程设计过程 机器学习 系统工程 人工智能 机械工程 材料科学 电信 工程类 数学 操作系统 计算机安全 复合材料 纯数学 相容性(地球化学)
作者
Hongjia Zhang,Wang Yang,Honggang Zhao,Keyu Lu,Dianlong Yu,Jihong Wen
出处
期刊:Materials & Design [Elsevier BV]
卷期号:207: 109855-109855 被引量:26
标识
DOI:10.1016/j.matdes.2021.109855
摘要

The topological design and optimization of metaporous materials is one of the key challenges in the field of sound absorption. Limited by the expensive computational cost, it is particularly disadvantaged when instantaneous multiple designs are required. In recent years, an increasing number of research fields are harnessing machine learning approaches thanks to their experience-free manner and outstanding efficiency. Generative Adversarial Networks (GANs), as a type of machine learning algorithms, enjoy the special benefit of powerful generative capability, making them brilliantly suitable for designing purposes. Additionally, it can fully explore the data distribution space with enormous computational power and create brand new designs. In this work, GANs are newly employed for the topological design of metaporous materials for sound absorption. Trained with numerically prepared data, they successfully propose designs with high-standard broadband absorption performance, verified by simulation and experiment. The designing process is dramatically accelerated by hundreds of times using GANs (100 designs in 4.372 s). This allows GANs to easily provide more structures and configurations, and achieve instantaneous multiple solutions, giving designers more choices to satisfy various constraints such as mass or porosity. In addition, GANs are demonstrated remarkably capable of generating creative configurations and rich local features. This work proposes a new designing principle, illustrates the value of machine learning in guiding the designing and optimizing process in the mechanical world, and opens new possibilities for the future of AI-materials interdisciplinary research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助心神依然采纳,获得10
1秒前
科研通AI5应助kk55采纳,获得10
1秒前
xianyaoz完成签到 ,获得积分0
2秒前
华仔应助小卢卢快闭嘴采纳,获得10
4秒前
gett发布了新的文献求助30
5秒前
leeky完成签到,获得积分10
6秒前
6秒前
kejun完成签到 ,获得积分10
6秒前
czy完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
9秒前
fffff完成签到,获得积分10
10秒前
QinGY发布了新的文献求助10
10秒前
陈居居发布了新的文献求助10
11秒前
11秒前
dalian完成签到,获得积分10
11秒前
LY发布了新的文献求助10
12秒前
Kaolala完成签到 ,获得积分10
12秒前
北方的狼发布了新的文献求助10
13秒前
14秒前
zhang完成签到,获得积分10
14秒前
14秒前
14秒前
czy发布了新的文献求助10
16秒前
leeky发布了新的文献求助10
16秒前
dream发布了新的文献求助10
17秒前
WaitP应助健忘的含卉采纳,获得10
18秒前
kk55发布了新的文献求助10
18秒前
ET-Su发布了新的文献求助10
18秒前
姜夔完成签到,获得积分10
19秒前
寂寞的迎天完成签到,获得积分20
19秒前
19秒前
Irene完成签到,获得积分10
20秒前
情怀应助Linda00采纳,获得30
20秒前
22秒前
zhendema完成签到,获得积分10
22秒前
mushanes发布了新的文献求助10
23秒前
北方的狼完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798813
求助须知:如何正确求助?哪些是违规求助? 3344550
关于积分的说明 10320522
捐赠科研通 3060978
什么是DOI,文献DOI怎么找? 1679963
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386