Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks

生成语法 计算机科学 生成设计 过程(计算) 宽带 吸收(声学) 领域(数学) 钥匙(锁) 计算机工程 工程设计过程 机器学习 系统工程 人工智能 机械工程 材料科学 电信 工程类 数学 操作系统 计算机安全 复合材料 纯数学 相容性(地球化学)
作者
Hongjia Zhang,Wang Yang,Honggang Zhao,Keyu Lu,Dianlong Yu,Jihong Wen
出处
期刊:Materials & Design [Elsevier BV]
卷期号:207: 109855-109855 被引量:26
标识
DOI:10.1016/j.matdes.2021.109855
摘要

The topological design and optimization of metaporous materials is one of the key challenges in the field of sound absorption. Limited by the expensive computational cost, it is particularly disadvantaged when instantaneous multiple designs are required. In recent years, an increasing number of research fields are harnessing machine learning approaches thanks to their experience-free manner and outstanding efficiency. Generative Adversarial Networks (GANs), as a type of machine learning algorithms, enjoy the special benefit of powerful generative capability, making them brilliantly suitable for designing purposes. Additionally, it can fully explore the data distribution space with enormous computational power and create brand new designs. In this work, GANs are newly employed for the topological design of metaporous materials for sound absorption. Trained with numerically prepared data, they successfully propose designs with high-standard broadband absorption performance, verified by simulation and experiment. The designing process is dramatically accelerated by hundreds of times using GANs (100 designs in 4.372 s). This allows GANs to easily provide more structures and configurations, and achieve instantaneous multiple solutions, giving designers more choices to satisfy various constraints such as mass or porosity. In addition, GANs are demonstrated remarkably capable of generating creative configurations and rich local features. This work proposes a new designing principle, illustrates the value of machine learning in guiding the designing and optimizing process in the mechanical world, and opens new possibilities for the future of AI-materials interdisciplinary research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KID完成签到,获得积分10
1秒前
2秒前
2秒前
my发布了新的文献求助10
2秒前
3秒前
张晓倩发布了新的文献求助10
5秒前
彭于晏应助腹黑同学采纳,获得10
5秒前
qinzhu完成签到,获得积分10
6秒前
6秒前
liuhuo发布了新的文献求助10
7秒前
7秒前
务实土豆发布了新的文献求助10
7秒前
小超发布了新的文献求助10
10秒前
英俊的铭应助小樊采纳,获得10
11秒前
justin完成签到,获得积分10
12秒前
12秒前
12秒前
星星给星星的求助进行了留言
13秒前
ChenJiahao发布了新的文献求助10
13秒前
11关闭了11文献求助
15秒前
漂流的云朵完成签到,获得积分10
15秒前
田様应助justin采纳,获得30
16秒前
16秒前
霸体廉颇发布了新的文献求助10
16秒前
xudong完成签到,获得积分10
17秒前
老迟到的泡芙完成签到 ,获得积分10
18秒前
18秒前
aaa应助楼谨言采纳,获得30
19秒前
带路完成签到,获得积分10
19秒前
liuhuo发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
kai发布了新的文献求助10
22秒前
ED应助小超采纳,获得10
22秒前
kylie发布了新的文献求助10
23秒前
23秒前
939996完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4252936
求助须知:如何正确求助?哪些是违规求助? 3786238
关于积分的说明 11883541
捐赠科研通 3436905
什么是DOI,文献DOI怎么找? 1886164
邀请新用户注册赠送积分活动 937562
科研通“疑难数据库(出版商)”最低求助积分说明 843221