Advanced Computational Methods for Mitigating Shock and Vibration Hazards in Deep Mines Gas Outburst Prediction Using SVM Optimized by Grey Relational Analysis and APSO Algorithm

灰色关联分析 支持向量机 粒子群优化 煤矿开采 算法 采矿工程 人工神经网络 工程类 计算机科学 人工智能 数学 统计 废物管理
作者
Xiang Wu,Yang Zhen,Dongdong Wu
出处
期刊:Shock and Vibration [Hindawi Publishing Corporation]
卷期号:2021 (1) 被引量:6
标识
DOI:10.1155/2021/5551320
摘要

Gas outburst poses a huge threat to the safe production of coal mines. Therefore, the prediction of gas outburst has always been a hot topic for researchers. In recent years, the use of artificial intelligence algorithms for gas outburst prediction has made progress, such as using BP neural network, GA algorithm, and SVM algorithm. Despite these progresses, predicting the gas outburst more accurately and efficiently still remains a great challenge. In this work, an algorithm based on grey relational analysis and SVM using adaptive particle swarm optimization (APSO‐SVM) for gas outburst prediction is proposed. Grey relational analysis was used to extract the four most relevant ones from nine gas outburst prediction parameters (geological structure zone distance, coal seam gas content, gas release initial velocity, gas desorption index‐K1, drill cuttings volume, coal seam depth, coal seam thickness, coal destruction type, and coal firmness coefficient) to give the needed parameters for SVM model. Higher prediction accuracy was then obtained with the selected parameters composed by coal seam gas content, gas release initial velocity, gas desorption index‐K1, and drill cuttings volume. Moreover, adaptive particle swarm optimization (APSO) was used to optimize the penalty factor and kernel parameters of the support vector machine to improve the global search ability and avoid the occurrence of the local optimal solutions. The APSO‐SVM model was applied to the prediction of gas outburst in 31004 tunneling face of Xinyuan Coal Mine, Yangquan City, Shanxi Province, China. We further introduced the criteria of accuracy, precision, recall, and F 2 ‐score to evaluate the prediction results of different models. The results show that, in the gas outburst prediction, the accuracy of the APSO‐SVM model is 98.38%, the precision and recall are both 100%, and F 2 ‐score is 1. Comparative studies confirm that APSO‐SVM displayed better performance than SVM and PSO‐SVM models for the applied grey relational analysis assisted gas outburst prediction. These obtained results indicate the validity of APSO‐SVM model for gas outburst prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔兔要睡觉完成签到 ,获得积分10
刚刚
辛辛发布了新的文献求助30
刚刚
北风发布了新的文献求助10
3秒前
寒冷孤风完成签到,获得积分10
3秒前
我是老大应助zhouyi采纳,获得10
5秒前
6秒前
CipherSage应助龙觅星峰采纳,获得10
7秒前
水尽云生处完成签到,获得积分10
7秒前
Jiro完成签到,获得积分10
7秒前
爱吃巧克力的克里克完成签到,获得积分10
8秒前
威武的匕发布了新的文献求助10
12秒前
14秒前
CYY驳回了桐桐应助
16秒前
18秒前
19秒前
二十六画生完成签到 ,获得积分10
19秒前
积极以云发布了新的文献求助10
20秒前
隐形曼青应助2233223采纳,获得10
21秒前
21秒前
22秒前
25秒前
东伯雪鹰发布了新的文献求助10
25秒前
nihao完成签到,获得积分10
25秒前
shidandan完成签到 ,获得积分10
25秒前
huhantong发布了新的文献求助10
26秒前
27秒前
27秒前
闲来逛逛007完成签到 ,获得积分10
28秒前
三金驳回了Alin应助
29秒前
清爽笑翠完成签到 ,获得积分10
30秒前
执着的采枫完成签到,获得积分10
34秒前
34秒前
36秒前
Kypsi发布了新的文献求助10
36秒前
37秒前
mawanyu发布了新的文献求助10
38秒前
HP发布了新的文献求助10
42秒前
北beibe完成签到,获得积分10
42秒前
Lucas应助GY采纳,获得10
44秒前
舒适长颈鹿完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780028
求助须知:如何正确求助?哪些是违规求助? 3325388
关于积分的说明 10222846
捐赠科研通 3040559
什么是DOI,文献DOI怎么找? 1668897
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612