CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia.
药理学
医学
作者
Bence Hegyi,Anna Fasoli,Christopher Y. Ko,Benjamin W. Van,Chidera C. Alim,Erin Y. Shen,Marisa M. Ciccozzi,Srinivas Tapa,Crystal M. Ripplinger,Jeffrey R. Erickson,Julie Bossuyt,Donald M. Bers
出处
期刊:Circulation Research [Lippincott Williams & Wilkins] 日期:2021-04-30卷期号:129 (1): 98-113被引量:4
Rationale: Diabetic hyperglycemia is associated with cardiac dysfunction and increased arrhythmia risk, and calcium/calmodulin-dependent protein kinase II (CaMKII) function has been implicated. CaMKII activity is promoted by both oxidation and O linked β-N-acetylglucosamine (O GlcNAc) of known CaMKII sites. Objective: To investigate which post-translational modifications occur in human diabetic hearts and how they alter electrophysiological and Ca2+ handling properties in hyperglycemia. Methods and Results: We assessed echocardiography, electrophysiology, Ca2+-handling, and protein expression in site-specific CaMKII mutant mice (O GlcNAc-resistant S280A and oxidation-resistant MM281/2VV knock-ins, and global and cardiac-specific knockouts), in myocytes subjected to acute hyperglycemia and angiotensin II (Ang-II) and mice after streptozotocin injections (to induce diabetes). Human patients with diabetes exhibit elevated CaMKII O GlcNAcylation but not oxidation. In mice, acute hyperglycemia increased spontaneous diastolic Ca2+ sparks and waves and arrhythmogenic action potential changes (prolongation, alternans and delayed afterdepolarizations), all of which required CaMKII-S280 O GlcNAcylation. Ang-II effects were dependent on NADPH oxidase 2 (NOX2)-mediated CaMKII MM281/2 oxidation. Diabetes led to much greater Ca2+ leak, RyR2 S2814 phosphorylation, electrophysiological remodeling, and increased susceptibility to in vivo arrhythmias, requiring CaMKII activation, predominantly via S280 O GlcNAcylation and less via MM281/2 oxidation. These effects were present in myocytes at normal glucose, but were exacerbated with the in-vivo high circulating glucose. Phospholamban (PLB) O-GlcNAcylation was increased and coincided with reduced PLB S16 phosphorylation in diabetes. Dantrolene, that reverses CaMKII-dependent proarrhythmic RyR-mediated Ca2+ leak, also prevented hyperglycemia-induced APD prolongation and delayed afterdepolarizations. Conclusions: We found that CaMKII-S280 O GlcNAcylation is required for increased arrhythmia susceptibility in diabetic hyperglycemia, which can be worsened by an additional angiotensin II-NOX2-CaMKII MM281/2 oxidation pathway. CaMKII-dependent RyR2 S2814 phosphorylation markedly increases proarrhythmic Ca2+ leak and PLB O-GlcNAcylation may limit SR Ca2+ reuptake, leading to impaired excitation-contraction coupling and arrhythmogenesis in diabetic hyperglycemia.