Low-Light Image and Video Enhancement Using Deep Learning: A Survey

计算机科学 可解释性 深度学习 人工智能 领域(数学) 机器学习 多媒体 数学 纯数学
作者
Chongyi Li,Chunle Guo,Ling-Hao Han,Jun Jiang,Ming–Ming Cheng,Jinwei Gu,Chen Change Loy
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (12): 9396-9416 被引量:344
标识
DOI:10.1109/tpami.2021.3126387
摘要

Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning strategies, network structures, loss functions, training data, etc. have been employed. In this paper, we provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues. To examine the generalization of existing methods, we propose a low-light image and video dataset, in which the images and videos are taken by different mobile phones' cameras under diverse illumination conditions. Besides, for the first time, we provide a unified online platform that covers many popular LLIE methods, of which the results can be produced through a user-friendly web interface. In addition to qualitative and quantitative evaluation of existing methods on publicly available and our proposed datasets, we also validate their performance in face detection in the dark. This survey together with the proposed dataset and online platform could serve as a reference source for future study and promote the development of this research field. The proposed platform and dataset as well as the collected methods, datasets, and evaluation metrics are publicly available and will be regularly updated. Project page: https://www.mmlab-ntu.com/project/lliv_survey/index.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的觅柔完成签到,获得积分10
刚刚
派大星完成签到,获得积分10
刚刚
蓝桉完成签到 ,获得积分10
刚刚
冷先森EPC完成签到,获得积分10
1秒前
义气的身影完成签到,获得积分10
1秒前
颜哈哈完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
e麓绝尘完成签到 ,获得积分10
3秒前
风趣的寻凝完成签到,获得积分10
3秒前
小丫头子发布了新的文献求助10
3秒前
Tracer完成签到,获得积分10
4秒前
狗焕完成签到,获得积分10
4秒前
领导范儿应助起床别睡了采纳,获得10
4秒前
Zin完成签到,获得积分10
4秒前
飞飞飞发布了新的文献求助10
4秒前
黎黎原上草完成签到,获得积分10
4秒前
桐桐应助热情迎彤采纳,获得10
5秒前
qiao应助派大星采纳,获得10
5秒前
5秒前
he完成签到,获得积分10
6秒前
shenmizhe完成签到,获得积分10
6秒前
一秒的剧情完成签到,获得积分10
7秒前
Mercy1999完成签到,获得积分10
7秒前
苗觉觉完成签到,获得积分10
7秒前
7秒前
Tacamily完成签到,获得积分10
7秒前
千千完成签到,获得积分10
7秒前
躲进小楼完成签到,获得积分20
7秒前
现代乌龟完成签到,获得积分10
8秒前
李怼怼完成签到,获得积分10
8秒前
pangpang完成签到,获得积分10
8秒前
lemon完成签到,获得积分10
8秒前
学术z完成签到,获得积分10
8秒前
helpme完成签到,获得积分10
9秒前
陌路完成签到,获得积分10
10秒前
美好的如蓉完成签到,获得积分10
10秒前
BREEZE完成签到,获得积分10
10秒前
撒西不理完成签到,获得积分10
11秒前
Mike完成签到,获得积分10
11秒前
活力傲蕾发布了新的文献求助10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264942
捐赠科研通 3049958
什么是DOI,文献DOI怎么找? 1673735
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549