亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low‐dose CT reconstruction with Noise2Noise network and testing‐time fine‐tuning

迭代重建 人工智能 计算机科学 深度学习 卷积神经网络 降噪 图像质量 计算机视觉 投影(关系代数) 模式识别(心理学) 算法
作者
Dufan Wu,Kyungsang Kim,Quanzheng Li
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.15101
摘要

Deep learning-based image denoising and reconstruction methods demonstrated promising performance on low-dose CT imaging in recent years. However, most existing deep learning-based low-dose CT reconstruction methods require normal-dose images for training. Sometimes such clean images do not exist such as for dynamic CT imaging or very large patients. The purpose of this work is to develop a low-dose CT image reconstruction algorithm based on deep learning which does not need clean images for training.In this paper, we proposed a novel reconstruction algorithm where the image prior was expressed via the Noise2Noise network, whose weights were fine-tuned along with the image during the iterative reconstruction. The Noise2Noise network built a self-consistent loss by projection data splitting and mapping the corresponding filtered backprojection (FBP) results to each other with a deep neural network. Besides, the network weights are optimized along with the image to be reconstructed under an alternating optimization scheme. In the proposed method, no clean image is needed for network training and the testing-time fine-tuning leads to optimization for each reconstruction.We used the 2016 Low-dose CT Challenge dataset to validate the feasibility of the proposed method. We compared its performance to several existing iterative reconstruction algorithms that do not need clean training data, including total variation, non-local mean, convolutional sparse coding, and Noise2Noise denoising. It was demonstrated that the proposed Noise2Noise reconstruction achieved better RMSE, SSIM and texture preservation compared to the other methods. The performance is also robust against the different noise levels, hyperparameters, and network structures used in the reconstruction. Furthermore, we also demonstrated that the proposed methods achieved competitive results without any pre-training of the network at all, that is, using randomly initialized network weights during testing. The proposed iterative reconstruction algorithm also has empirical convergence with and without network pre-training.The proposed Noise2Noise reconstruction method can achieve promising image quality in low-dose CT image reconstruction. The method works both with and without pre-training, and only noisy data are required for pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助梦想家采纳,获得10
9秒前
科研通AI6应助LeezZZZ采纳,获得10
16秒前
迷茫的一代完成签到,获得积分10
27秒前
53秒前
梦想家发布了新的文献求助10
58秒前
熊啊发布了新的文献求助10
1分钟前
1分钟前
Virtual应助科研通管家采纳,获得20
1分钟前
小周完成签到 ,获得积分10
1分钟前
2分钟前
梦想家完成签到,获得积分10
3分钟前
3分钟前
story发布了新的文献求助10
3分钟前
科研通AI2S应助story采纳,获得10
3分钟前
3分钟前
鉴定为学计算学的完成签到,获得积分10
3分钟前
熊啊发布了新的文献求助10
3分钟前
Kevin完成签到,获得积分10
4分钟前
sci2025opt完成签到 ,获得积分10
4分钟前
5分钟前
李健应助鸡蛋黄采纳,获得10
5分钟前
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
5分钟前
鸡蛋黄发布了新的文献求助10
5分钟前
完美世界应助眼睛大智宸采纳,获得10
5分钟前
市政的艺术家完成签到,获得积分10
5分钟前
Virtual应助科研通管家采纳,获得20
5分钟前
JamesPei应助市政的艺术家采纳,获得20
6分钟前
lod完成签到,获得积分10
6分钟前
6分钟前
淡淡醉波wuliao完成签到 ,获得积分0
6分钟前
可可完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
熊啊发布了新的文献求助10
7分钟前
lj发布了新的文献求助10
7分钟前
Ava应助krajicek采纳,获得10
7分钟前
NexusExplorer应助熊啊采纳,获得10
7分钟前
lj完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877