A Learning Sparrow Search Algorithm

计算机科学 水准点(测量) 算法 随机性 数学优化 路径(计算) 人口 搜索算法 运动规划 局部搜索(优化) 人工智能 数学 机器人 统计 社会学 人口学 程序设计语言 地理 大地测量学
作者
Chengtian Ouyang,Donglin Zhu,Fengqi Wang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2021 (1) 被引量:76
标识
DOI:10.1155/2021/3946958
摘要

This paper solves the drawbacks of traditional intelligent optimization algorithms relying on 0 and has good results on CEC 2017 and benchmark functions, which effectively improve the problem of algorithms falling into local optimality. The sparrow search algorithm (SSA) has significant optimization performance, but still has the problem of large randomness and is easy to fall into the local optimum. For this reason, this paper proposes a learning sparrow search algorithm, which introduces the lens reverse learning strategy in the discoverer stage. The random reverse learning strategy increases the diversity of the population and makes the search method more flexible. In the follower stage, an improved sine and cosine guidance mechanism is introduced to make the search method of the discoverer more detailed. Finally, a differential‐based local search is proposed. The strategy is used to update the optimal solution obtained each time to prevent the omission of high‐quality solutions in the search process. LSSA is compared with CSSA, ISSA, SSA, BSO, GWO, and PSO in 12 benchmark functions to verify the feasibility of the algorithm. Furthermore, to further verify the effectiveness and practicability of the algorithm, LSSA is compared with MSSCS, CSsin, and FA‐CL in CEC 2017 test function. The simulation results show that LSSA has good universality. Finally, the practicability of LSSA is verified by robot path planning, and LSSA has good stability and safety in path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助HiNDT采纳,获得30
4秒前
4秒前
5秒前
9秒前
g7001完成签到,获得积分10
9秒前
雯雯完成签到,获得积分10
10秒前
dido发布了新的文献求助10
10秒前
allenise发布了新的文献求助10
10秒前
11秒前
甜甜友容完成签到,获得积分10
13秒前
小馒头完成签到,获得积分10
13秒前
大模型应助刘忙采纳,获得10
13秒前
领导范儿应助xixi采纳,获得10
14秒前
淡定从霜完成签到 ,获得积分10
16秒前
汉堡包应助MM采纳,获得10
17秒前
17秒前
18秒前
科研通AI5应助博修采纳,获得30
18秒前
19秒前
Cynthia完成签到 ,获得积分10
20秒前
Anderson732完成签到,获得积分10
20秒前
SuLi_ALL发布了新的文献求助10
23秒前
幸福妙柏完成签到 ,获得积分10
23秒前
YP发布了新的文献求助10
24秒前
创不可贴完成签到,获得积分10
24秒前
科研通AI5应助dido采纳,获得10
27秒前
Alexbirchurros完成签到 ,获得积分10
28秒前
28秒前
天天快乐应助俞思含采纳,获得10
29秒前
Anderson732发布了新的文献求助10
29秒前
橙子完成签到,获得积分10
30秒前
30秒前
30秒前
早早入眠完成签到,获得积分10
30秒前
SYLH应助Kasierz采纳,获得10
30秒前
33秒前
快乐太英完成签到 ,获得积分10
34秒前
小石头完成签到,获得积分10
34秒前
科研助手6应助ohenry采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693