DBSCAN Clustering Algorithm Based on Density

数据库扫描 聚类分析 计算机科学 CURE数据聚类算法 树冠聚类算法 数据挖掘 数据流聚类 相关聚类 模式识别(心理学) 人工智能 确定数据集中的群集数 高维数据聚类 单连锁聚类 算法
作者
Dingsheng Deng
出处
期刊:2020 7th International Forum on Electrical Engineering and Automation (IFEEA) 卷期号:: 949-953 被引量:157
标识
DOI:10.1109/ifeea51475.2020.00199
摘要

Clustering technology has important applications in data mining, pattern recognition, machine learning and other fields. However, with the explosive growth of data, traditional clustering algorithm is more and more difficult to meet the needs of big data analysis. How to improve the traditional clustering algorithm and ensure the quality and efficiency of clustering under the background of big data has become an important research topic of artificial intelligence and big data processing. The density-based clustering algorithm can cluster arbitrarily shaped data sets in the case of unknown data distribution. DBSCAN is a classical density-based clustering algorithm, which is widely used for data clustering analysis due to its simple and efficient characteristics. The purpose of this paper is to study DBSCAN clustering algorithm based on density. This paper first introduces the concept of DBSCAN algorithm, and then carries out performance tests on DBSCAN algorithm in three different data sets. By analyzing the experimental results, it can be concluded that DBSCAN algorithm has higher homogeneity and diversity when it performs personalized clustering on data sets of non-uniform density with broad values and gradually sparse forwards. When the DBSCAN algorithm's neighborhood distance eps is 1000, 26 classes are generated after clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FATHER LI完成签到,获得积分10
刚刚
pcb发布了新的文献求助10
刚刚
爆米花应助麟钰采纳,获得10
1秒前
wanci应助星河在眼里采纳,获得10
1秒前
顺其自然完成签到 ,获得积分10
1秒前
1秒前
Yangyang完成签到,获得积分10
1秒前
白青完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
林屿溪完成签到,获得积分10
2秒前
2秒前
许甜甜鸭应助科研通管家采纳,获得10
2秒前
YellowStar发布了新的文献求助10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
歡禧发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
3秒前
柯科研发布了新的文献求助10
3秒前
sb发布了新的文献求助10
3秒前
3秒前
3秒前
Mandy完成签到,获得积分10
3秒前
传奇3应助lxz采纳,获得10
4秒前
4秒前
雾影觅光完成签到,获得积分10
5秒前
Alger完成签到,获得积分10
5秒前
Kira发布了新的文献求助10
5秒前
5秒前
wqy完成签到,获得积分10
5秒前
6秒前
lhy完成签到,获得积分10
6秒前
tjfwg完成签到,获得积分10
6秒前
科研通AI5应助张张采纳,获得10
6秒前
tyc发布了新的文献求助10
6秒前
敏感的山晴完成签到,获得积分10
7秒前
7秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376729
关于积分的说明 10494684
捐赠科研通 3096157
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820213
科研通“疑难数据库(出版商)”最低求助积分说明 771893