葡萄酒
多路复用
拉曼光谱
风味
拉曼散射
复矩阵
化学计量学
仿形(计算机编程)
材料科学
纳米技术
化学
计算机科学
色谱法
生物信息学
物理
生物
操作系统
光学
生物化学
食品科学
作者
Yong Xiang Leong,Yih Hong Lee,Charlynn Sher Lin Koh,Gia Chuong Phan‐Quang,Xuemei Han,In Yee Phang,Xing Yi Ling
出处
期刊:Nano Letters
[American Chemical Society]
日期:2021-03-12
卷期号:21 (6): 2642-2649
被引量:151
标识
DOI:10.1021/acs.nanolett.1c00416
摘要
Integrating machine learning with surface-enhanced Raman scattering (SERS) accelerates the development of practical sensing devices. Such integration, in combination with direct detection or indirect analyte capturing strategies, is key to achieving high predictive accuracies even in complex matrices. However, in-depth understanding of spectral variations arising from specific chemical interactions is essential to prevent model overfit. Herein, we design a machine-learning-driven "SERS taster" to simultaneously harness useful vibrational information from multiple receptors for enhanced multiplex profiling of five wine flavor molecules at parts-per-million levels. Our receptors employ numerous noncovalent interactions to capture chemical functionalities within flavor molecules. By strategically combining all receptor-flavor SERS spectra, we construct comprehensive "SERS superprofiles" for predictive analytics using chemometrics. We elucidate crucial molecular-level interactions in flavor identification and further demonstrate the differentiation of primary, secondary, and tertiary alcohol functionalities. Our SERS taster also achieves perfect accuracies in multiplex flavor quantification in an artificial wine matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI