Random Topology and Random Multiscale Mapping: An Automated Design of Multiscale and Lightweight Neural Network for Remote-Sensing Image Recognition

计算机科学 卷积神经网络 拓扑(电路) 合成孔径雷达 上下文图像分类 网络拓扑 特征提取 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 算法 图像(数学) 操作系统 哲学 组合数学 语言学 数学
作者
Jihao Li,Martin Weinmann,Xian Sun,Wenhui Diao,Yingchao Feng,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2021.3102988
摘要

With the proposal of neural architecture search (NAS), automated network architecture design gradually becomes a new way in deep learning research. Due to its high capability regarding automated design, some pioneers have made an attempt to apply NAS in remote sensing and made some achievements, like 1-D/3-D Auto-convolutional neural network (CNN) and polarimetric synthetic aperture radar (PolSAR)-tailored Differentiable Architecture Search (PDAS). However, there are still some areas to be improved for existing NAS in remote-sensing field. In this article, we propose a random topology and random multiscale mapping (RTRMM) method to generate a multiscale and lightweight architecture for remote-sensing image recognition. First, a random topology generator generates the topology through random graph. Second, during the experiment, we find remote-sensing image features extracted by a multiscale network are more appropriate, compared with features extracted by a single-scale model. Nevertheless, the complexity inevitably increases with the introduction of a multiscale concept. Consequently, we design a variable search space consisting of decomposition convolution units under the guidance of mathematical analysis. The mapping of each neuron is then determined by a random multiscale mapping sampler. After that, we assemble the topology and mappings into blocks and construct three RTRMM models. Experiments on four scene classification datasets confirm the feature extraction capability and lightweight performance of RTRMM models. Moreover, we also observe that our approach achieves a better tradeoff between floating-point operations (FLOPs) and accuracy than some current well-behaved methods. Furthermore, the results on Vaihingen dataset verify the high feature-transfer capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MLi发布了新的文献求助10
1秒前
Yukirin完成签到,获得积分10
1秒前
2秒前
2秒前
非而者厚给cc的求助进行了留言
2秒前
wyc发布了新的文献求助10
3秒前
4秒前
隐形曼青应助霍凡白采纳,获得10
5秒前
5秒前
7秒前
洁净冬瓜发布了新的文献求助10
8秒前
舒心以蓝完成签到,获得积分10
8秒前
搓姆酿发布了新的文献求助10
8秒前
善学以致用应助妮儿采纳,获得10
8秒前
李爱国应助虚心的冷雪采纳,获得10
9秒前
xxyy完成签到 ,获得积分10
9秒前
miss_puff给miss_puff的求助进行了留言
11秒前
12秒前
12秒前
可爱的函函应助ybwei2008_163采纳,获得10
13秒前
LAIII完成签到,获得积分10
15秒前
16秒前
SYLH应助俭朴的期待采纳,获得10
17秒前
17秒前
17秒前
hzz关闭了hzz文献求助
18秒前
彩色的芝麻完成签到 ,获得积分10
19秒前
星辰大海应助可靠盼旋采纳,获得10
21秒前
wjr发布了新的文献求助10
21秒前
样样子完成签到,获得积分10
22秒前
霍凡白发布了新的文献求助10
22秒前
22秒前
艾桑发布了新的文献求助10
22秒前
23秒前
嵇南露完成签到,获得积分10
24秒前
在水一方应助mia采纳,获得10
26秒前
26秒前
26秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801824
求助须知:如何正确求助?哪些是违规求助? 3347627
关于积分的说明 10334518
捐赠科研通 3063778
什么是DOI,文献DOI怎么找? 1682083
邀请新用户注册赠送积分活动 807911
科研通“疑难数据库(出版商)”最低求助积分说明 763969