Chemical Modification and Functionalization of Graphdiyne

表面改性 效果修正 化学工程 化学改性 材料科学 高分子化学 数学 工程类 置信区间 统计
作者
Yongjun Li,Yuliang Li
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:34 (9): 992-1013 被引量:40
标识
DOI:10.3866/pku.whxb201801302
摘要

Graphdiyne features sp and sp 2 hybridized carbon atoms.The direct natural band gap and Dirac cone structure for graphdiyne are believed to originated from inhomogeneous π-bonding of differently hybridized carbon atoms and overlap of carbon 2pz orbitals.The special electronic structures and pore structures of graphdiyne are responsible for its potential and important applications in the fields of information technology, electronics, energy, catalysis, and optoelectronics.Recent basic and applied research studies of graphdiyne have led to important results; as a result, graphdiyne has become a new research field for carbon materials.The high activity of acetylenic units in graphdiyne provides a good platform for chemical modification and doping.Several approaches have been developed to modify the band gap of graphdiyne, including invoking strain, BN-doping, preparing nanoribbons, and hydrogenation, leading to a new graphdiyne (GDY) or graphyne (GY) derivatives.In this review, we summarize the recent progress in nonmetallic heteroatom doping, especially by nitrogen, boron, or oxygen; by modifying metal atoms for tuning electronic/spintronic properties, enhancing water splitting performance, and applying dye-sensitized solar cells and catalysts; and by surface functionalization of graphdiyne via hydrogenation, hydroxylation, and halogenation to adjust the band gap.Hence, it can be surmised that the electronic structures of graphdiynes can be tuned for specific applications.These results suggest that graphdiynes can be more advantageous than grapheme for tailoring energy band gaps for application in nanoelectronics.We also discuss the influence of doping and functionalization on the electronic properties of graphdiyne and their effects on the synergistic enhancement of photoelectrocatalytic performance.We hope that the deep and wide application of these new materials in many fields such as energy transfer and storage, catalyst, electronics, gas separation, and spintronics will draw much attention and become a widely focused research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gaowj0322完成签到,获得积分10
2秒前
3秒前
cccccl发布了新的文献求助10
4秒前
4秒前
孙浩宸关注了科研通微信公众号
5秒前
6秒前
WANG完成签到,获得积分10
8秒前
群山完成签到 ,获得积分10
8秒前
独特的飞烟完成签到,获得积分10
9秒前
baolongzhan完成签到,获得积分10
10秒前
jovrtic发布了新的文献求助10
10秒前
满意外套完成签到,获得积分10
11秒前
沫柠完成签到 ,获得积分10
11秒前
Luna完成签到 ,获得积分10
11秒前
12秒前
Wujialu完成签到,获得积分10
13秒前
科研通AI5应助独特的问夏采纳,获得10
16秒前
脑洞疼应助云起龙都采纳,获得10
17秒前
jovrtic完成签到,获得积分10
18秒前
AbMole_小智完成签到 ,获得积分10
20秒前
鸭梨很大完成签到 ,获得积分10
21秒前
24秒前
25秒前
云起龙都发布了新的文献求助10
28秒前
Owen应助李老头采纳,获得10
29秒前
甘氨酸完成签到,获得积分0
31秒前
32秒前
Jasper应助斯文明杰采纳,获得10
32秒前
十年发布了新的文献求助10
36秒前
37秒前
37秒前
李健的小迷弟应助东123采纳,获得10
37秒前
38秒前
威武的大树关注了科研通微信公众号
39秒前
40秒前
40秒前
Akim应助cccccl采纳,获得20
40秒前
cwy发布了新的文献求助10
40秒前
微笑完成签到,获得积分10
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783084
求助须知:如何正确求助?哪些是违规求助? 3328426
关于积分的说明 10236375
捐赠科研通 3043530
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799751
科研通“疑难数据库(出版商)”最低求助积分说明 759119