Comprehensive Assessment of Genotype Imputation Performance

插补(统计学) 次等位基因频率 单核苷酸多态性 1000基因组计划 SNP公司 生物 全基因组关联研究 遗传关联 单倍型 基因型 遗传学 统计 计算生物学 缺少数据 数学 基因
作者
Shuo Shi,Na Yuan,Ming Yang,Zhenglin Du,Jinyue Wang,Xin Sheng,Jiayan Wu,Jingfa Xiao
出处
期刊:Human Heredity [S. Karger AG]
卷期号:83 (3): 107-116 被引量:64
标识
DOI:10.1159/000489758
摘要

Genotype imputation is a process of estimating missing ge-notypes from the haplotype or genotype reference panel. It can effectively boost the power of detecting single nucleotide polymorphisms (SNPs) in genome-wide association studies, integrate multi-studies for meta-analysis, and be applied in fine-mapping studies. The performance of genotype imputation is affected by many factors, including software, reference selection, sample size, and SNP density/sequencing coverage. A systematical evaluation of the imputation performance of current popular software will benefit future studies. Here, we evaluate imputation performances of Beagle4.1, IMPUTE2, MACH+Minimac3, and SHAPEIT2+ IM-PUTE2 using test samples of East Asian ancestry and references of the 1000 Genomes Project. The result indicated the accuracy of IMPUTE2 (99.18%) is slightly higher than that of the others (Beagle4.1: 98.94%, MACH+Minimac3: 98.51%, and SHAPEIT2+IMPUTE2: 99.08%). To achieve good and stable imputation quality, the minimum requirement of SNP density needs to be > 200/Mb. The imputation accuracies of IMPUTE2 and Beagle4.1 were under the minor influence of the study sample size. The contribution extent of reference to genotype imputation performance relied on software selection. We assessed the imputation performance on SNPs generated by next-generation whole genome sequencing and found that SNP sets detected by sequencing with 15× depth could be mostly got by imputing from the haplotype reference panel of the 1000 Genomes Project based on SNP data detected by sequencing with 4× depth. All of the imputation software had a weaker performance in low minor allele frequency SNP regions because of the bias of reference or software. In the future, more comprehensive reference panels or new algorithm developments may rise up to this challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助100
3秒前
123456完成签到 ,获得积分10
4秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
BAI_1完成签到,获得积分10
9秒前
研友_西门孤晴完成签到,获得积分10
11秒前
LIKUN完成签到,获得积分10
12秒前
myq完成签到 ,获得积分10
13秒前
王杰秀完成签到 ,获得积分10
16秒前
美好灵寒完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
s_yu完成签到,获得积分10
23秒前
清爽的冬寒完成签到 ,获得积分10
24秒前
24秒前
盛意完成签到,获得积分10
26秒前
方也日月完成签到,获得积分10
27秒前
hadfunsix完成签到 ,获得积分10
30秒前
温婉的志泽完成签到 ,获得积分10
30秒前
彩色映雁完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
38秒前
xue112完成签到 ,获得积分0
39秒前
韩野完成签到,获得积分10
39秒前
Elytra完成签到,获得积分10
39秒前
XDF完成签到 ,获得积分10
40秒前
正直幼枫发布了新的文献求助20
40秒前
wzh完成签到,获得积分10
42秒前
闫小闫完成签到 ,获得积分10
42秒前
孙非完成签到,获得积分10
46秒前
lina完成签到 ,获得积分10
46秒前
46秒前
豌豆完成签到 ,获得积分10
50秒前
李爱国应助科研通管家采纳,获得10
51秒前
jeany199037完成签到,获得积分10
51秒前
小药童应助科研通管家采纳,获得10
51秒前
小药童应助科研通管家采纳,获得10
51秒前
小药童应助科研通管家采纳,获得10
51秒前
52秒前
正直幼枫完成签到,获得积分20
53秒前
量子星尘发布了新的文献求助10
53秒前
路人完成签到,获得积分0
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583396
关于积分的说明 14389385
捐赠科研通 4512650
什么是DOI,文献DOI怎么找? 2473151
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432839