An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms

医学 队列 医学诊断 人工智能 二元分类 机器学习 随机森林 算法 接收机工作特性 过度诊断 病理 放射科 支持向量机 计算机科学
作者
Michael Parkes,A.Z. Aliabadi,Martín Cadeiras,María G. Crespo‐Leiro,Mario C. Deng,E.C. DePasquale,J. Goekler,Daniel H. Kim,Jon Kobashigawa,Alexandre Loupy,Peter S. Macdonald,Luciano Potena,Andreas Zuckermann,Philip F. Halloran
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:38 (6): 636-646 被引量:55
标识
DOI:10.1016/j.healun.2019.01.1318
摘要

BACKGROUND

We previously reported a microarray-based diagnostic system for heart transplant endomyocardial biopsies (EMBs), using either 3-archetype (3AA) or 4-archetype (4AA) unsupervised algorithms to estimate rejection. In the present study we examined the stability of machine-learning algorithms in new biopsies, compared 3AA vs 4AA algorithms, assessed supervised binary classifiers trained on histologic or molecular diagnoses, created a report combining many scores into an ensemble of estimates, and examined possible automated sign-outs.

METHODS

We studied 889 EMBs from 454 transplant recipients at 8 centers: the initial cohort (N = 331) and a new cohort (N = 558). Published 3AA algorithms derived in Cohort 331 were tested in Cohort 558, the 3AA and 4AA models were compared, and supervised binary classifiers were created.

RESULTS

A`lgorithms derived in Cohort 331 performed similarly in new biopsies despite differences in case mix. In the combined cohort, the 4AA model, including a parenchymal injury score, retained correlations with histologic rejection and DSA similar to the 3AA model. Supervised molecular classifiers predicted molecular rejection (areas under the curve [AUCs] >0.87) better than histologic rejection (AUCs <0.78), even when trained on histology diagnoses. A report incorporating many AA and binary classifier scores interpreted by 1 expert showed highly significant agreement with histology (p < 0.001), but with many discrepancies, as expected from the known noise in histology. An automated random forest score closely predicted expert diagnoses, confirming potential for automated signouts.

CONCLUSIONS

Molecular algorithms are stable in new populations and can be assembled into an ensemble that combines many supervised and unsupervised estimates of the molecular disease states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
元宵宵完成签到,获得积分10
2秒前
5秒前
7秒前
龙成阳完成签到,获得积分10
7秒前
墨染书香发布了新的文献求助10
8秒前
飞宇发布了新的文献求助10
9秒前
机灵的煎蛋完成签到,获得积分10
9秒前
慕青应助既晓采纳,获得10
9秒前
夕诙应助SOTERIA采纳,获得35
10秒前
wy.he应助英勇的书包采纳,获得10
11秒前
快递乱跑完成签到 ,获得积分10
13秒前
mimiflying发布了新的文献求助10
13秒前
13秒前
既晓完成签到,获得积分10
15秒前
15秒前
黄振全完成签到,获得积分10
16秒前
千空发布了新的文献求助10
17秒前
既晓发布了新的文献求助10
19秒前
MeSs完成签到 ,获得积分10
20秒前
cling12发布了新的文献求助10
20秒前
22秒前
渔舟唱晚完成签到 ,获得积分10
27秒前
28秒前
健忘半邪完成签到 ,获得积分10
28秒前
bkagyin应助科研通管家采纳,获得30
30秒前
Ava应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
31秒前
下X下发布了新的文献求助10
32秒前
猪血糕yu完成签到,获得积分10
35秒前
Mizuki完成签到,获得积分10
36秒前
36秒前
在水一方应助mimiflying采纳,获得10
36秒前
执着幻桃完成签到,获得积分10
37秒前
37秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120679
求助须知:如何正确求助?哪些是违规求助? 3658860
关于积分的说明 11582257
捐赠科研通 3360447
什么是DOI,文献DOI怎么找? 1846369
邀请新用户注册赠送积分活动 911179
科研通“疑难数据库(出版商)”最低求助积分说明 827352