HMeta-d: hierarchical Bayesian estimation of metacognitive efficiency from confidence ratings

置信区间 元认知 估计 心理学 贝叶斯概率 贝叶斯估计量 计量经济学 数学 统计 人工智能 计算机科学 经济 认知 神经科学 管理
作者
Stephen M. Fleming
出处
期刊:Neuroscience of Consciousness [University of Oxford]
卷期号:2017 (1) 被引量:269
标识
DOI:10.1093/nc/nix007
摘要

Metacognition refers to the ability to reflect on and monitor one's cognitive processes, such as perception, memory and decision-making. Metacognition is often assessed in the lab by whether an observer's confidence ratings are predictive of objective success, but simple correlations between performance and confidence are susceptible to undesirable influences such as response biases. Recently, an alternative approach to measuring metacognition has been developed (Maniscalco and Lau 2012) that characterizes metacognitive sensitivity (meta-d') by assuming a generative model of confidence within the framework of signal detection theory. However, current estimation routines require an abundance of confidence rating data to recover robust parameters, and only provide point estimates of meta-d'. In contrast, hierarchical Bayesian estimation methods provide opportunities to enhance statistical power, incorporate uncertainty in group-level parameter estimates and avoid edge-correction confounds. Here I introduce such a method for estimating metacognitive efficiency (meta-d'/d') from confidence ratings and demonstrate its application for assessing group differences. A tutorial is provided on both the meta-d' model and the preparation of behavioural data for model fitting. Through numerical simulations I show that a hierarchical approach outperforms alternative fitting methods in situations where limited data are available, such as when quantifying metacognition in patient populations. In addition, the model may be flexibly expanded to estimate parameters encoding other influences on metacognitive efficiency. MATLAB software and documentation for implementing hierarchical meta-d' estimation (HMeta-d) can be downloaded at https://github.com/smfleming/HMeta-d.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
5秒前
s2183622完成签到,获得积分10
5秒前
7秒前
7秒前
默默琳完成签到,获得积分10
8秒前
Wian发布了新的文献求助10
9秒前
尔信完成签到 ,获得积分10
9秒前
icel完成签到,获得积分10
9秒前
Akim应助科研通管家采纳,获得10
10秒前
科研助手6应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
科研助手6应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
李健应助PMX采纳,获得10
10秒前
动漫大师发布了新的文献求助10
12秒前
黄可以完成签到,获得积分10
12秒前
14秒前
3237924531发布了新的文献求助10
17秒前
Cc8完成签到,获得积分10
17秒前
llg发布了新的文献求助10
21秒前
sen123完成签到,获得积分10
22秒前
23秒前
段段发布了新的文献求助10
28秒前
32秒前
无花果应助霸气的梦露采纳,获得10
32秒前
cdercder应助清新的音响采纳,获得10
33秒前
调皮静竹发布了新的文献求助10
33秒前
35秒前
小AB发布了新的文献求助10
35秒前
35秒前
37秒前
39秒前
Tonald Yang发布了新的文献求助10
41秒前
41秒前
41秒前
开放映冬完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339