Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning

计算机科学 人工智能 支持向量机 卷积神经网络 模式识别(心理学) 机器学习 仿形(计算机编程) 上下文图像分类 深度学习 特征提取 数据挖掘 图像(数学) 操作系统
作者
Nan Meng,Edmund Y. Lam,Kevin K. Tsia,Hayden Kwok‐Hay So
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 2091-2098 被引量:88
标识
DOI:10.1109/jbhi.2018.2878878
摘要

Recent advances in ultra-high-throughput microscopy have enabled a new generation of cell classification methodologies using image-based cell phenotypes alone. In contrast to current single-cell analysis techniques that rely solely on slow and costly genetic/epigenetic analysis, these image-based analyses allow morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost, and have been proven to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biological applications, ranging from cancer screening to drug candidate identification/validation processes. This paper examines the efficacies and opportunities presented by machine learning algorithms in processing large scale datasets with millions of label-free cell images. An automatic single-cell classification framework using convolutional neural network (CNN) has been developed. A comparative analysis of its efficiency in classifying large datasets against conventional k-nearest neighbors (kNN) and support vector machine (SVM) based methods are also presented. Experiments have shown that our proposed framework can efficiently identify multiple types cells with over 99% accuracy based on the phenotypic label-free bright-field images; and CNN-based models perform well and relatively stable against data volume compared with kNN and SVM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jasper应助linkman采纳,获得10
1秒前
1秒前
2秒前
Hello应助开朗寇采纳,获得10
2秒前
传奇3应助yrw采纳,获得10
2秒前
高兴寒梦完成签到 ,获得积分10
2秒前
小蘑菇应助yangyangyang采纳,获得10
3秒前
周明明完成签到 ,获得积分10
3秒前
张雨完成签到,获得积分20
3秒前
云峰完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
LuvXu发布了新的文献求助10
5秒前
111x完成签到,获得积分10
5秒前
CipherSage应助猪猪hero采纳,获得10
5秒前
珂儿完成签到,获得积分10
6秒前
奔跑的考拉完成签到,获得积分10
6秒前
sandra完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助usee采纳,获得30
6秒前
6秒前
Hello应助Yang采纳,获得10
6秒前
hwq发布了新的文献求助10
7秒前
乐一李完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
duoduo发布了新的文献求助10
8秒前
领导范儿应助下文献采纳,获得10
9秒前
9秒前
zzz发布了新的文献求助10
9秒前
Akim应助梁家瑜采纳,获得10
9秒前
10秒前
10秒前
佳佳发布了新的文献求助10
10秒前
乐乐应助开朗寇采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981975
求助须知:如何正确求助?哪些是违规求助? 3525725
关于积分的说明 11228003
捐赠科研通 3263558
什么是DOI,文献DOI怎么找? 1801529
邀请新用户注册赠送积分活动 879897
科研通“疑难数据库(出版商)”最低求助积分说明 807613