亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multikernel Capsule Network for Schizophrenia Identification

过度拟合 人工智能 计算机科学 模式识别(心理学) 人工神经网络 分类器(UML) 机器学习
作者
Tian Wang,Anastasios Bezerianos,Andrzej Cichocki,Junhua Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 4741-4750 被引量:20
标识
DOI:10.1109/tcyb.2020.3035282
摘要

Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine-learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multikernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match partition sizes of the brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of the widely used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized the capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multikernel capsule structure with the consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的士晋完成签到,获得积分10
4秒前
小文子完成签到 ,获得积分10
5秒前
烟花应助风风采纳,获得10
12秒前
王_123123123123w完成签到 ,获得积分10
13秒前
WerWu完成签到,获得积分10
15秒前
22秒前
Able完成签到,获得积分10
23秒前
28秒前
Akim应助fl采纳,获得10
35秒前
隐形路灯完成签到 ,获得积分10
35秒前
缓慢的灵枫完成签到 ,获得积分10
36秒前
自信的半凡完成签到,获得积分20
37秒前
贪玩的书雪完成签到,获得积分10
39秒前
40秒前
41秒前
悄悄拔尖儿完成签到 ,获得积分10
44秒前
Ytgl发布了新的文献求助10
45秒前
fl发布了新的文献求助10
46秒前
LJL完成签到 ,获得积分10
46秒前
47秒前
TT发布了新的文献求助30
50秒前
52秒前
ZhaoPeng完成签到,获得积分10
52秒前
英俊的铭应助TT采纳,获得30
57秒前
小松鼠完成签到,获得积分10
57秒前
59秒前
劳健龙完成签到 ,获得积分10
1分钟前
小松鼠发布了新的文献求助50
1分钟前
Sssssss完成签到 ,获得积分10
1分钟前
orixero应助_ban采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
上官若男应助fl采纳,获得10
1分钟前
1分钟前
fl发布了新的文献求助10
1分钟前
1分钟前
想吃芝士焗饭完成签到 ,获得积分10
1分钟前
huangbing123完成签到 ,获得积分10
1分钟前
Enero发布了新的文献求助10
2分钟前
Enero完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780778
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758723