亲密度
计算机科学
高斯过程
概率逻辑
排名(信息检索)
克里金
回归
过程(计算)
机器学习
高斯分布
人工智能
点(几何)
算法
数学优化
数学
统计
量子力学
几何学
操作系统
物理
数学分析
作者
Joaquin Quiñonero-Candela,Carl Edward Rasmussen
标识
DOI:10.5555/1046920.1194909
摘要
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.
科研通智能强力驱动
Strongly Powered by AbleSci AI