Dual Encoder-Based Dynamic-Channel Graph Convolutional Network With Edge Enhancement for Retinal Vessel Segmentation

计算机科学 分割 编码器 人工智能 图像分割 深度学习 模式识别(心理学) 计算机视觉 频道(广播) 卷积神经网络 电信 操作系统
作者
Yang Li,Yue Zhang,Weigang Cui,Baiying Lei,Xihe Kuang,Teng Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 1975-1989 被引量:110
标识
DOI:10.1109/tmi.2022.3151666
摘要

Retinal vessel segmentation with deep learning technology is a crucial auxiliary method for clinicians to diagnose fundus diseases. However, the deep learning approaches inevitably lose the edge information, which contains spatial features of vessels while performing down-sampling, leading to the limited segmentation performance of fine blood vessels. Furthermore, the existing methods ignore the dynamic topological correlations among feature maps in the deep learning framework, resulting in the inefficient capture of the channel characterization. To address these limitations, we propose a novel dual encoder-based dynamic-channel graph convolutional network with edge enhancement (DE-DCGCN-EE) for retinal vessel segmentation. Specifically, we first design an edge detection-based dual encoder to preserve the edge of vessels in down-sampling. Secondly, we investigate a dynamic-channel graph convolutional network to map the image channels to the topological space and synthesize the features of each channel on the topological map, which solves the limitation of insufficient channel information utilization. Finally, we study an edge enhancement block, aiming to fuse the edge and spatial features in the dual encoder, which is beneficial to improve the accuracy of fine blood vessel segmentation. Competitive experimental results on five retinal image datasets validate the efficacy of the proposed DE-DCGCN-EE, which achieves more remarkable segmentation results against the other state-of-the-art methods, indicating its potential clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ping发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
希望天下0贩的0应助Lay采纳,获得10
1秒前
搞科研的小李同学完成签到 ,获得积分10
2秒前
wl5289发布了新的文献求助20
3秒前
南屿完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
平常的傲白完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
852应助阿秋秋秋采纳,获得10
9秒前
9秒前
10秒前
11秒前
巴足伍卡发布了新的文献求助10
11秒前
开朗寇发布了新的文献求助10
12秒前
罗氏集团发布了新的文献求助10
12秒前
12秒前
le000000完成签到,获得积分10
12秒前
拿拿餐餐完成签到,获得积分10
12秒前
曾经雪瑶发布了新的文献求助20
12秒前
13秒前
hyfan发布了新的文献求助10
13秒前
13秒前
14秒前
斯文败类应助阔达小懒虫采纳,获得10
14秒前
15秒前
YuuuuuK发布了新的文献求助10
15秒前
ArkZ发布了新的文献求助10
16秒前
ww发布了新的文献求助10
16秒前
16秒前
16秒前
桐桐应助jia0采纳,获得10
16秒前
丁真真发布了新的文献求助10
18秒前
ping完成签到,获得积分10
19秒前
深情的冬灵完成签到,获得积分20
19秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906279
求助须知:如何正确求助?哪些是违规求助? 3452017
关于积分的说明 10867151
捐赠科研通 3177383
什么是DOI,文献DOI怎么找? 1755435
邀请新用户注册赠送积分活动 848801
科研通“疑难数据库(出版商)”最低求助积分说明 791294