A Systematic Guide for Predicting Remaining Useful Life with Machine Learning

过程(计算) 计算机科学 背景(考古学) 机器学习 可靠性工程 封面(代数) 预言 人工智能 风险分析(工程) 工程类 运筹学 数据挖掘 机械工程 医学 古生物学 生物 操作系统
作者
Tarek Berghout,Mohamed Benbouzid
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (7): 1125-1125 被引量:47
标识
DOI:10.3390/electronics11071125
摘要

Prognosis and health management (PHM) are mandatory tasks for real-time monitoring of damage propagation and aging of operating systems during working conditions. More definitely, PHM simplifies conditional maintenance planning by assessing the actual state of health (SoH) through the level of aging indicators. In fact, an accurate estimate of SoH helps determine remaining useful life (RUL), which is the period between the present and the end of a system’s useful life. Traditional residue-based modeling approaches that rely on the interpretation of appropriate physical laws to simulate operating behaviors fail as the complexity of systems increases. Therefore, machine learning (ML) becomes an unquestionable alternative that employs the behavior of historical data to mimic a large number of SoHs under varying working conditions. In this context, the objective of this paper is twofold. First, to provide an overview of recent developments of RUL prediction while reviewing recent ML tools used for RUL prediction in different critical systems. Second, and more importantly, to ensure that the RUL prediction process from data acquisition to model building and evaluation is straightforward. This paper also provides step-by-step guidelines to help determine the appropriate solution for any specific type of driven data. This guide is followed by a classification of different types of ML tools to cover all the discussed cases. Ultimately, this review-based study uses these guidelines to determine learning model limitations, reconstruction challenges, and future prospects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anna发布了新的文献求助10
1秒前
2秒前
haihuhu完成签到 ,获得积分10
2秒前
2秒前
研友_VZG7GZ应助suyi采纳,获得10
3秒前
科目三应助小卫采纳,获得10
3秒前
4秒前
猫儿烟烟完成签到,获得积分10
4秒前
今后应助无语的梦菲采纳,获得10
4秒前
MiriamYu完成签到,获得积分10
5秒前
doctor杨完成签到,获得积分10
5秒前
6秒前
SYLH应助圆圆玉采纳,获得10
6秒前
7秒前
SYLH应助LXhong采纳,获得10
7秒前
7秒前
123完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
lling完成签到 ,获得积分10
10秒前
烟花应助Ly啦啦啦采纳,获得10
11秒前
seon完成签到,获得积分10
11秒前
LGJ完成签到,获得积分10
11秒前
快乐的一刀完成签到,获得积分10
11秒前
cat发布了新的文献求助10
12秒前
1啊哈哈哈3完成签到,获得积分10
12秒前
Yolanda发布了新的文献求助10
13秒前
难过盼海完成签到,获得积分10
13秒前
13秒前
13秒前
Icy发布了新的文献求助10
13秒前
lxxy123完成签到 ,获得积分10
14秒前
鳗鱼绿蝶发布了新的文献求助10
14秒前
14秒前
danna应助Tao采纳,获得10
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031