亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neurochemical Concentration Prediction Using Deep Learning vs Principal Component Regression in Fast Scan Cyclic Voltammetry: A Comparison Study

神经化学 多巴胺 血清素 神经递质 主成分分析 深度学习 神经科学 化学 主成分回归 体内 人工智能 计算机科学 生物化学 生物 中枢神经系统 生物技术 受体
作者
Hoseok Choi,Hojin Shin,Hyun U. Cho,Charles D. Blaha,Michael L. Heien,Yoonbae Oh,Kendall H. Lee,Dong Pyo Jang
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:13 (15): 2288-2297 被引量:11
标识
DOI:10.1021/acschemneuro.2c00069
摘要

Neurotransmitters, such as dopamine and serotonin, are responsible for mediating a wide array of neurologic functions, from memory to motivation. From measurements using fast scan cyclic voltammetry (FSCV), one of the main tools used to detect synaptic efflux of neurochemicals in vivo, principal component regression (PCR), has been commonly used to predict the identity and concentrations of neurotransmitters. However, the sensitivity and discrimination performance of PCR have room for improvement, especially for analyzing mixtures of similar oxidizable neurochemicals. Deep learning may be able to address these challenges. To date, there have been a few studies to apply machine learning to FSCV, but no attempt to apply deep learning to neurotransmitter mixture discrimination and no comparative study have been performed between PCR and deep learning methods to demonstrate which is more accurate for FSCV analysis so far. In this study, we compared the neurochemical identification and concentration estimation performance of PCR and deep learning in an analysis of FSCV recordings of catecholamine and indolamine neurotransmitters. Both analysis methods were tested on in vitro FSCV data with a single or mixture of neurotransmitters at the desired concentration. In addition, the estimation performance of PCR and deep learning was compared in incorporation with in vivo experiments to evaluate the practical usage. Pharmacological tests were also conducted to see whether deep learning would track the increased amount of catecholamine levels in the brain. Using conventional FSCV, we used five electrodes and recorded in vitro background-subtracted cyclic voltammograms from four neurotransmitters, dopamine, epinephrine, norepinephrine, and serotonin, with five concentrations of each substance, as well as various mixtures of the four analytes. The results showed that the identification accuracy errors were reduced 5–20% by using deep learning compared to using PCR for mixture analysis, and the two methods were comparable for single analyte analysis. The applied deep-learning-based method demonstrated not only higher identification accuracy but also better discrimination performance than PCR for mixtures of neurochemicals and even for in vivo testing. Therefore, we suggest that deep learning should be chosen as a more reliable tool to analyze FSCV data compared to conventional PCR methods although further work is still needed on developing complete validation procedures prior to widespread use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
12秒前
41秒前
王钰绮完成签到 ,获得积分10
52秒前
miku完成签到 ,获得积分10
57秒前
1分钟前
川川完成签到 ,获得积分10
1分钟前
FJXTY发布了新的文献求助10
1分钟前
科研通AI6应助Lunatic采纳,获得10
2分钟前
2分钟前
meeteryu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
kkm完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Lunatic发布了新的文献求助10
3分钟前
3分钟前
3分钟前
鹏虫虫发布了新的文献求助10
3分钟前
3分钟前
clairvoyance发布了新的文献求助30
3分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
af完成签到,获得积分10
4分钟前
5分钟前
灼灼朗朗完成签到,获得积分10
5分钟前
zhangjianzeng完成签到 ,获得积分10
5分钟前
夜雨声烦发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
从来都不会放弃zr完成签到,获得积分10
6分钟前
送不送书7完成签到 ,获得积分10
6分钟前
lsh完成签到,获得积分10
6分钟前
Aimee完成签到,获得积分10
7分钟前
7分钟前
司空天德发布了新的文献求助10
7分钟前
司空天德完成签到,获得积分0
7分钟前
浮游应助科研通管家采纳,获得30
8分钟前
呆萌冰彤完成签到 ,获得积分10
8分钟前
ys完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438509
求助须知:如何正确求助?哪些是违规求助? 4549712
关于积分的说明 14220837
捐赠科研通 4470516
什么是DOI,文献DOI怎么找? 2449899
邀请新用户注册赠送积分活动 1440870
关于科研通互助平台的介绍 1417326