Path-Constrained and Collision-Free Optimal Trajectory Planning for Robot Manipulators

工作区 运动规划 机器人 控制理论(社会学) 机器人运动学 笛卡尔坐标系 弹道 计算机科学 运动学 移动机器人 数学优化 数学 人工智能 物理 几何学 经典力学 控制(管理) 天文
作者
Yalun Wen,Prabhakar R. Pagilla
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 763-774 被引量:14
标识
DOI:10.1109/tase.2022.3169989
摘要

In this paper, we develop a novel path-constrained and collision-free optimal trajectory planning algorithm for robot manipulators in the presence of obstacles for the following problem: Given a desired sequence of discrete waypoints of robot configurations, a set of robot kinematic and dynamic constraints, and a set of obstacles, determine a time and jerk optimal and collision-free trajectory for the robot passing through the given waypoints. Our approach in developing the robot path through the waypoints relies on the orthogonal collocation method where the states are represented with Legendre polynomials in the Barycentric form; the transcription process efficiently converts the continuous-time formulation of the optimal control problem into a discrete non-linear program. In addition, we provide an efficient method for avoiding robot self-collisions (of joints and links) and collisions with workspace obstacles by modeling them as the union of spheres and cylinders in the workspace. The resulting collision free optimal trajectory provides smooth and constrained motion for the robot passing through all the waypoints in the given prescribed sequence with a constant speed. The proposed method is validated using numerical simulations and experiments on a six degree-of-freedom robot. Note to Practitioners—This paper is motivated by planning collision-free optimal trajectories with constant Cartesian speed (norm of translation velocity) along a given list of waypoints. The primary applications include developing constant Cartesian speed trajectories for robotic surface finishing operations, spray painting operations and robot endurance testing. Sampling-based motion planning algorithms have been widely used for their high efficiency and robustness. However, those methods in general do not take into account the joint level constraints, motion jerk, robot dynamic model and kinematic constraints together. In addition, with these algorithms, it is difficult to generate a trajectory along a list of waypoints while maintaining a constant Cartesian speed. We provide an efficient robot trajectory planning algorithm for articulated robots that is capable of achieving time and jerk optimality while avoiding obstacles and satisfying robot kinematic and dynamic constraints. The scope of this work is limited to considering only static obstacles and pre-defined Cartesian waypoints; potential extensions include consideration of dynamic obstacles and incorporating tighter bounds for objects modeled by cylinders and spheres so that a larger workspace is available for trajectory planning, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djf发布了新的文献求助10
1秒前
63完成签到,获得积分20
2秒前
华仔应助西西采纳,获得10
2秒前
lxd完成签到,获得积分10
3秒前
3秒前
Zzzzccc完成签到 ,获得积分10
7秒前
7秒前
ZJ发布了新的文献求助10
8秒前
ls完成签到,获得积分10
9秒前
9秒前
星辰大海应助周钰波采纳,获得20
10秒前
西西完成签到,获得积分10
11秒前
12秒前
13秒前
西西发布了新的文献求助10
13秒前
隐形曼青应助笙笙采纳,获得10
14秒前
ZJ完成签到,获得积分10
15秒前
prim发布了新的文献求助10
16秒前
归尘应助sywkamw采纳,获得30
16秒前
Singularity应助夹心吉吉采纳,获得10
17秒前
17秒前
19秒前
田様应助坦率的傲芙采纳,获得10
20秒前
机灵一兰完成签到 ,获得积分10
20秒前
李爱国应助美好鞅采纳,获得10
21秒前
科研通AI2S应助cis2014采纳,获得10
22秒前
23秒前
李新宇完成签到,获得积分20
25秒前
25秒前
FightingW完成签到,获得积分10
27秒前
传奇3应助稳重奇异果采纳,获得10
28秒前
solidcon发布了新的文献求助10
29秒前
慕青应助cc采纳,获得10
31秒前
36秒前
36秒前
36秒前
37秒前
合适怀亦完成签到 ,获得积分10
38秒前
天真千凡给天真千凡的求助进行了留言
39秒前
科研小白白完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872