A hybrid prediction frame for HEAs based on empirical knowledge and machine learning

机器学习 高熵合金 人工智能 计算机科学 实证研究 登普斯特-沙弗理论 可靠性 帧(网络) 材料科学 熵(时间箭头) 算法 数学 热力学 微观结构 统计 电信 物理 冶金 法学 政治学
作者
Shuai Hou,Mengyue Sun,Meijuan Bai,Defu Lin,Yujiao Li,Weiwei Liu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:228: 117742-117742 被引量:16
标识
DOI:10.1016/j.actamat.2022.117742
摘要

Phase formation plays key role in the properties of high-entropy alloys (HEAs). If the phases of HEAs can be accurately predicted, the number of experiments can be greatly reduced, and the process of material design can be greatly accelerated. Machine-learning methods have been successfully and widely applied to predict the phases of HEAs. However, the accuracy of a single machine-learning (ML) algorithm is not ideal and different ML algorithms may predict different results. These issues hinder the application of ML in material design. In this paper, a hybrid frame for HEAs phase prediction, which combines machine-learning and empirical knowledge, is proposed. First, for the purpose of solving the problem that a sample may be predicted as inconsistent prediction phases by different algorithms, the Dempster-Shafer (DS) evidence theory is adopted to fuse the inconsistent of the predicted phases among different algorithms, and provide a fusion prediction phase with the highest credibility. Second, a conflict-resolution model with high accuracy based on the improved DS evidence theory is proposed. Last, the empirical knowledge criterion is combined with the conflict-resolution model to improve the efficiency and accuracy of the hybrid prediction frame. The 426 different HEAs samples consisting of 180 quinaries, 189 senaries, and 57 septenaries were collected to validate against the effectiveness of the proposed methods. The experimental results demonstrate the hybrid prediction frame achieves higher accuracy and better performance than single ML algorithm. Keywords: Hybrid model; High-entropy alloys; Phase prediction; DS evidence theory
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
lynn应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
专注的千筹完成签到,获得积分10
6秒前
叫啥不吃饭完成签到,获得积分10
7秒前
lulu666完成签到 ,获得积分10
8秒前
快乐慕灵完成签到,获得积分10
11秒前
11秒前
15秒前
17秒前
20秒前
20秒前
小譆驳回了Orange应助
21秒前
大饼大饼发布了新的文献求助10
27秒前
dwfwq完成签到,获得积分10
27秒前
andy发布了新的文献求助10
27秒前
邢契完成签到,获得积分10
29秒前
29秒前
30秒前
32秒前
淡然冬灵应助zxy采纳,获得30
32秒前
33秒前
April完成签到,获得积分10
33秒前
糊涂涂完成签到,获得积分10
33秒前
GGbond完成签到,获得积分10
34秒前
雪白翠桃发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366