Objective assessment of trait attentional control predicts driver response to emergency failures of vehicular automation

毒物控制 自动化 伤害预防 职业安全与健康 特质 自杀预防 人为因素与人体工程学 工程类 计算机科学 模拟 医疗急救 计算机安全 可靠性工程 医学 病理 机械工程 程序设计语言
作者
Manuel S. Seet,Andrei Dragomir,Jonathan Harvy,Nitish V. Thakor,Anastasios Bezerianos
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:168: 106588-106588 被引量:11
标识
DOI:10.1016/j.aap.2022.106588
摘要

With the advent of autonomous driving, the issue of human intervention during safety-critical events is an urgent topic of research. Supervisory monitoring, taking over vehicle control during automation failures and then bringing the vehicle to safety under time pressure are cognitively demanding tasks that pose varying difficulties across the driving population. This underpins a need to investigate individual differences (i.e., how people differ in their dispositional traits) in driver responses to automation system limits, so that autonomous vehicle design can be tailored to meet the safety-critical needs of higher-risk drivers. However, few studies thus far have examined individual differences, with self-report measures showing limited ability to predict driver takeover performance. To address this gap, the present study explored the utility of an established brain activity-based objective index of trait attentional control (frontal theta/beta ratio; TBR) in predicting driver interactions with conditional automation. Frontal TBR predicted drivers’ average takeover reaction time, as well as the likelihood of accident after takeover. Moving towards practical applications, this study also demonstrated the utility of streamlined estimates of frontal TBR measured from the forehead electrodes and from a single crown electrode, with the latter showing better fidelity and predictive value. Overall, TBR is behaviourally relevant, measurable with minimal sensors and easily computable, rendering it a promising candidate for practical and objective assessment of drivers’ neurocognitive traits that contribute to their AV driving readiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxiaojiao完成签到 ,获得积分10
1秒前
2秒前
3秒前
CodeCraft应助小包谷采纳,获得10
5秒前
apple完成签到,获得积分10
5秒前
浮游应助乐观伟诚采纳,获得10
6秒前
糖伯虎完成签到 ,获得积分10
6秒前
wudilaoren发布了新的文献求助10
6秒前
今后应助jiaman1031采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
changping应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
changping应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
感动友桃应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
changping应助科研通管家采纳,获得200
10秒前
10秒前
10秒前
10秒前
彭于晏应助111111采纳,获得10
10秒前
11秒前
sansan完成签到,获得积分10
12秒前
极品男大完成签到,获得积分10
12秒前
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
Nnn发布了新的文献求助10
13秒前
安详的一曲完成签到 ,获得积分10
14秒前
Ryousou25完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360